ALMOST EVERYWHERE CONVERGENCE OF THE CESARO MEANS OF TWO VARIABLEWALSH-FOURIER SERIES WITH VARIABLE PARAMETERS

被引:0
作者
Joudeh, A. A. Abu [1 ]
Gat, G. [1 ]
机构
[1] Univ Debrecen, Inst Math, Debrecen, Hungary
关键词
D O I
10.1007/s11253-021-01928-9
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
It is shown that the maximal operator of some (C, beta(n))-means of cubical partial sums of two variable Walsh-Fourier series of integrable functions is of weak type (L-1, L-1). Moreover, the (C, beta(n))-means sigma(beta n)(2n) f of the function f is an element of L-1 converge a.e. to f for f is an element of L-1(I-2), where I is the Walsh group for some sequences 1 > beta(n) SE arrow 0.
引用
收藏
页码:337 / 358
页数:22
相关论文
共 13 条
[1]   CONVERGENCE OF CESARO MEANS WITH VARYING PARAMETERS OF WALSH-FOURIER SERIES [J].
Abu Joudeh, Anas Ahmad ;
Gat, Gyorgy .
MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) :303-317
[3]  
Akhobadze T., 2014, B TICMI, V18, P75
[4]  
[Anonymous], 1988, SOOBSHCH AKAD NAUK G
[5]   On (C,1) summability for Vilenkin-like systems [J].
Gát, G .
STUDIA MATHEMATICA, 2001, 144 (02) :101-120
[6]   Marcinkiewicz-Fejer means of d-dimensional Walsh-Fourier series [J].
Goginava, U .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2005, 307 (01) :206-218
[7]   Almost everywhere convergence of (C, α)-means of cubical partial sums of d-dimensional Walsh-Fourier series [J].
Goginava, Ushangi .
JOURNAL OF APPROXIMATION THEORY, 2006, 141 (01) :8-28
[8]  
Gt G., 2004, Georgian Math. J, V11, P467, DOI [10.1515/GMJ.2004.467, DOI 10.1515/GMJ.2004.467]
[9]  
MARCINKIEWICZ J, 1939, ANN SCUOLA NORM-SCI, V8, P239
[10]  
Schipp F., 1990, WALSH SERIES INTRO D, DOI DOI 10.1063/1.4767144