Estimates of the potential kernel and Harnack's inequality for the anisotropic fractional Laplacian

被引:41
作者
Bogdan, Krzysztof [1 ]
Sztonyk, Pawel [1 ]
机构
[1] Wroclaw Univ Technol, Polish Acad Sci, Inst Math, PL-50370 Wroclaw, Poland
关键词
potential kernel; Harnack's inequality; relative Kato condition; Green function; stable process;
D O I
10.4064/sm181-2-1
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We characterize those homogeneous translation invariant symmetric nonlocal operators with positive maximum principle whose harmonic functions satisfy Harnack's inequality. We also estimate the corresponding semigroup and the potential kernel.
引用
收藏
页码:101 / 123
页数:23
相关论文
共 54 条
[1]  
[Anonymous], 2003, TSUKUBA J MATH, V27, P261
[2]  
[Anonymous], FOURIER ANAL SEMIGRO
[3]   The interplay of social influence and nature of fulfillment: Effects on consumer attitudes [J].
Bailey, AA .
PSYCHOLOGY & MARKETING, 2004, 21 (04) :263-278
[4]  
BARLOW M, 2005, PREPRINT
[5]   Harnack inequalities for non-local operators of variable order [J].
Bass, RF ;
Kassmann, M .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2005, 357 (02) :837-850
[6]   Harnack inequalities for jump processes [J].
Bass, RF ;
Levin, DA .
POTENTIAL ANALYSIS, 2002, 17 (04) :375-388
[7]  
Bass RF, 1998, PROB APPL S
[8]  
BASS RF, 2004, STOCHASTIC DIFFERENT, V1, P1
[9]  
BERG C, 1975, ERGEBNISSE MATH IHRE, V87
[10]  
BERTOIN J, 1996, LEVY P