Surface-emitting THz sources based on difference-frequency generation in mid-infrared quantum cascade lasers

被引:0
作者
Geiser, M. [1 ,2 ]
Pfluegl, C. [1 ]
Belyanin, A. [3 ]
Wang, Q. J. [1 ]
Yu, N. [1 ]
Belkin, M. A. [1 ]
Edamura, T. [4 ]
Kan, H. [4 ]
Fischer, M. [2 ]
Wittmann, A. [2 ]
Faist, J. [2 ]
Capasso, Federico [1 ]
机构
[1] Harvard Univ, Sch Engn & Appl Sci, 9 Oxford St, Cambridge, MA 02138 USA
[2] ETH, Inst Quantum Elect, CH-8093 Zurich, Switzerland
[3] Texas A&M Univ, Dept Phys, College Stn, TX 77843 USA
[4] Hamamatsu Photon KK, Cent Res Labs, Hamakita Ku, Hamamatsu, Shizuoka 4348601, Japan
来源
NOVEL IN-PLANE SEMICONDUCTOR LASERS IX | 2010年 / 7616卷
关键词
Quantum Cascade Laser; Multi-wavelength laser; THz; Nonlinear optics; Difference Frequency Generation; Surface emission; Frequency mixing; Mode competition; Gain competition;
D O I
10.1117/12.845066
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
We report a surface-emitting THz source based on intracavity difference-frequency generation in dual-wavelength mid-infrared quantum cascade lasers with integrated giant second-order nonlinear susceptibility. The THz light is coupled out of the waveguide by a second-order grating etched into the laser ridges. In contrast to sources where the difference-frequency radiation is emitted from the facet, this approach enables extraction of the THz emission from the whole length of the device even when the coherence length is small. We also studied the properties of the mid-infrared pump beams and found that due to gain competition, mid-infrared modes tend to start lasing in higher order lateral modes. The mid-infrared mode with the lower threshold current reduces population inversion for the second laser with the higher threshold current due to stimulated emission. We developed a rate equation model to quantitatively describe mode interactions due to mutual gain depletion.
引用
收藏
页数:11
相关论文
共 15 条
[1]   Coherent 5.35 μm surface emission from a GaAs-based distributed feedback quantum-cascade laser -: art. no. 121104 [J].
Austerer, M ;
Pflügl, C ;
Golka, S ;
Schrenk, W ;
Andrews, AM ;
Roch, T ;
Strasser, G .
APPLIED PHYSICS LETTERS, 2006, 88 (12)
[2]   Terahertz quantum-cascade-laser source based on intracavity difference-frequency generation [J].
Belkin, Mikhail A. ;
Capasso, Federico ;
Belyanin, Alexey ;
Sivco, Deborah L. ;
Cho, Alfred Y. ;
Oakley, Douglas C. ;
Vineis, Christopher J. ;
Turner, George W. .
NATURE PHOTONICS, 2007, 1 (05) :288-292
[3]   High-Temperature Operation of Terahertz Quantum Cascade Laser Sources [J].
Belkin, Mikhail A. ;
Wang, Qi Jie ;
Pfluegl, Christian ;
Belyanin, Alexey ;
Khanna, Suraj P. ;
Davies, Alexander Giles ;
Linfield, Edmund Harold ;
Capasso, Federico .
IEEE JOURNAL OF SELECTED TOPICS IN QUANTUM ELECTRONICS, 2009, 15 (03) :952-967
[4]   Room temperature terahertz quantum cascade laser source based on intracavity difference-frequency generation [J].
Belkin, Mikhail A. ;
Capasso, Federico ;
Xie, Feng ;
Belyanin, Alexey ;
Fischer, Milan ;
Wittmann, Andreas ;
Faist, Jerome .
APPLIED PHYSICS LETTERS, 2008, 92 (20)
[5]   Bound-to-continuum and two-phonon resonance quantum-cascade lasers for high duty cycle, high-temperature operation [J].
Faist, J ;
Hofstetter, D ;
Beck, M ;
Aellen, T ;
Rochat, M ;
Blaser, S .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2002, 38 (06) :533-546
[6]   Surface emitting terahertz quantum cascade laser with a double-metal waveguide [J].
Fan, Jonathan A. ;
Belkin, Mikhail A. ;
Capasso, Federico ;
Khanna, Suraj ;
Lachab, Mohamed ;
Davies, A. Giles ;
Linfield, Edmund H. .
OPTICS EXPRESS, 2006, 14 (24) :11672-11680
[7]   Optimized second-harmonic generation in quantum cascade lasers [J].
Gmachl, C ;
Belyanin, A ;
Sivco, DL ;
Peabody, ML ;
Owschimikow, N ;
Sergent, AM ;
Capasso, F ;
Cho, AY .
IEEE JOURNAL OF QUANTUM ELECTRONICS, 2003, 39 (11) :1345-1355
[8]   Surface-emitting distributed feedback terahertz quantum-cascade lasers in metal-metal waveguides [J].
Kumar, Sushil ;
Williams, Benjamin S. ;
Qin, Qi ;
Lee, Alan W. M. ;
Hu, Qing ;
Reno, John L. .
OPTICS EXPRESS, 2007, 15 (01) :113-128
[9]   3 W continuous-wave room temperature single-facet emission from quantum cascade lasers based on nonresonant extraction design approach [J].
Lyakh, A. ;
Maulini, R. ;
Tsekoun, A. ;
Go, R. ;
Pfluegl, C. ;
Diehl, L. ;
Wang, Q. J. ;
Capasso, Federico ;
Patel, C. Kumar N. .
APPLIED PHYSICS LETTERS, 2009, 95 (14)
[10]   1.6 W high wall plug efficiency, continuous-wave room temperature quantum cascade laser emitting at 4.6 μm [J].
Lyakh, A. ;
Pfluegl, C. ;
Diehl, L. ;
Wang, Q. J. ;
Capasso, Federico ;
Wang, X. J. ;
Fan, J. Y. ;
Tanbun-Ek, T. ;
Maulini, R. ;
Tsekoun, A. ;
Go, R. ;
Patel, C. Kumar N. .
APPLIED PHYSICS LETTERS, 2008, 92 (11)