What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior

被引:505
作者
Behrens, Timothy E. J. [1 ,2 ]
Muller, Timothy H. [1 ]
Whittington, James C. R. [1 ]
Mark, Shirley [2 ]
Baram, Alon B. [1 ]
Stachenfeld, Kimberly L. [3 ]
Kurth-Nelson, Zeb [3 ,4 ]
机构
[1] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Ctr Funct Magnet Resonance Imaging Brain, John Radcliffe Hosp, Oxford OX3 9DU, England
[2] UCL, Wellcome Ctr Human Neuroimaging, Inst Neurol, 12 Queen Sq, London WC1N 3BG, England
[3] DeepMind, London, England
[4] UCL, Max Planck UCL Ctr Computat Psychiat & Ageing Res, London, England
基金
英国惠康基金;
关键词
ORBITOFRONTAL CORTEX; TRANSITIVE INFERENCE; PREFRONTAL CORTEX; GRID CELLS; NEURAL REPRESENTATIONS; LEARNING-SYSTEMS; VISUAL SPACE; HIPPOCAMPUS; DECISION; MEMORY;
D O I
10.1016/j.neuron.2018.10.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
It is proposed that a cognitive map encoding the relationships between entities in the world supports flexible behavior, but the majority of the neural evidence for such a system comes from studies of spatial navigation. Recent work describing neuronal parallels between spatial and non-spatial behaviors has rekindled the notion of a systematic organization of knowledge across multiple domains. We review experimental evidence and theoretical frameworks that point to principles unifying these apparently disparate functions. These principles describe how to learn and use abstract, generalizable knowledge and suggest that map-like representations observed in a spatial context may be an instance of general coding mechanisms capable of organizing knowledge of all kinds. We highlight how artificial agents endowed with such principles exhibit flexible behavior and learn map-like representations observed in the brain. Finally, we speculate on how these principles may offer insight into the extreme generalizations, abstractions, and inferences that characterize human cognition.
引用
收藏
页码:490 / 509
页数:20
相关论文
共 130 条
  • [81] Human-level control through deep reinforcement learning
    Mnih, Volodymyr
    Kavukcuoglu, Koray
    Silver, David
    Rusu, Andrei A.
    Veness, Joel
    Bellemare, Marc G.
    Graves, Alex
    Riedmiller, Martin
    Fidjeland, Andreas K.
    Ostrovski, Georg
    Petersen, Stig
    Beattie, Charles
    Sadik, Amir
    Antonoglou, Ioannis
    King, Helen
    Kumaran, Dharshan
    Wierstra, Daan
    Legg, Shane
    Hassabis, Demis
    [J]. NATURE, 2015, 518 (7540) : 529 - 533
  • [82] The successor representation in human reinforcement learning
    Momennejad, I.
    Russek, E. M.
    Cheong, J. H.
    Botvinick, M. M.
    Daw, N. D.
    Gershman, S. J.
    [J]. NATURE HUMAN BEHAVIOUR, 2017, 1 (09): : 680 - 692
  • [83] Momennejad I., 2017, BIORXIV, V100, DOI [10.1101/196758, DOI 10.1101/196758]
  • [84] Hexadirectional coding of visual space in human entorhinal cortex
    Nau, Matthias
    Schroder, Tobias Navarro
    Bellmund, Jacob L. S.
    Doeller, Christian F.
    [J]. NATURE NEUROSCIENCE, 2018, 21 (02) : 188 - +
  • [85] Dissociable roles of ventral and dorsal striatum in instrumental conditioning
    O'Doherty, J
    Dayan, P
    Schultz, J
    Deichmann, R
    Friston, KJ
    Dolan, RJ
    [J]. SCIENCE, 2004, 304 (5669) : 452 - 454
  • [86] Hippocampal place cells construct reward related sequences through unexplored space
    Olafsdottir, H. Freyja
    Barry, Caswell
    Saleem, Aman B.
    Hassabis, Demis
    Spiers, Hugo J.
    [J]. ELIFE, 2015, 4
  • [87] Emergence of simple-cell receptive field properties by learning a sparse code for natural images
    Olshausen, BA
    Field, DJ
    [J]. NATURE, 1996, 381 (6583) : 607 - 609
  • [88] Social place-cells in the bat hippocampus
    Omer, David B.
    Maimon, Shir R.
    Las, Liora
    Ulanovsky, Nachum
    [J]. SCIENCE, 2018, 359 (6372) : 218 - +
  • [89] Otmakhova NA, 1996, J NEUROSCI, V16, P7478
  • [90] Neurons in the orbitofrontal cortex encode economic value
    Padoa-Schioppa, C
    Assad, JA
    [J]. NATURE, 2006, 441 (7090) : 223 - 226