What Is a Cognitive Map? Organizing Knowledge for Flexible Behavior

被引:543
作者
Behrens, Timothy E. J. [1 ,2 ]
Muller, Timothy H. [1 ]
Whittington, James C. R. [1 ]
Mark, Shirley [2 ]
Baram, Alon B. [1 ]
Stachenfeld, Kimberly L. [3 ]
Kurth-Nelson, Zeb [3 ,4 ]
机构
[1] Univ Oxford, Wellcome Ctr Integrat Neuroimaging, Ctr Funct Magnet Resonance Imaging Brain, John Radcliffe Hosp, Oxford OX3 9DU, England
[2] UCL, Wellcome Ctr Human Neuroimaging, Inst Neurol, 12 Queen Sq, London WC1N 3BG, England
[3] DeepMind, London, England
[4] UCL, Max Planck UCL Ctr Computat Psychiat & Ageing Res, London, England
基金
英国惠康基金;
关键词
ORBITOFRONTAL CORTEX; TRANSITIVE INFERENCE; PREFRONTAL CORTEX; GRID CELLS; NEURAL REPRESENTATIONS; LEARNING-SYSTEMS; VISUAL SPACE; HIPPOCAMPUS; DECISION; MEMORY;
D O I
10.1016/j.neuron.2018.10.002
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
It is proposed that a cognitive map encoding the relationships between entities in the world supports flexible behavior, but the majority of the neural evidence for such a system comes from studies of spatial navigation. Recent work describing neuronal parallels between spatial and non-spatial behaviors has rekindled the notion of a systematic organization of knowledge across multiple domains. We review experimental evidence and theoretical frameworks that point to principles unifying these apparently disparate functions. These principles describe how to learn and use abstract, generalizable knowledge and suggest that map-like representations observed in a spatial context may be an instance of general coding mechanisms capable of organizing knowledge of all kinds. We highlight how artificial agents endowed with such principles exhibit flexible behavior and learn map-like representations observed in the brain. Finally, we speculate on how these principles may offer insight into the extreme generalizations, abstractions, and inferences that characterize human cognition.
引用
收藏
页码:490 / 509
页数:20
相关论文
共 130 条
[61]   Grid cells map the visual world [J].
Killian, Nathaniel J. ;
Buffalo, Elizabeth A. .
NATURE NEUROSCIENCE, 2018, 21 (02) :161-162
[62]   Overcoming catastrophic forgetting in neural networks [J].
Kirkpatricka, James ;
Pascanu, Razvan ;
Rabinowitz, Neil ;
Veness, Joel ;
Desjardins, Guillaume ;
Rusu, Andrei A. ;
Milan, Kieran ;
Quan, John ;
Ramalho, Tiago ;
Grabska-Barwinska, Agnieszka ;
Hassabis, Demis ;
Clopath, Claudia ;
Kumaran, Dharshan ;
Hadsell, Raia .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (13) :3521-3526
[63]   Bandit based Monte-Carlo planning [J].
Kocsis, Levente ;
Szepesvari, Csaba .
MACHINE LEARNING: ECML 2006, PROCEEDINGS, 2006, 4212 :282-293
[64]   The architecture of cognitive control in the human prefrontal cortex [J].
Koechlin, E ;
Ody, C ;
Kouneiher, F .
SCIENCE, 2003, 302 (5648) :1181-1185
[65]   Robust Conjunctive Item-Place Coding by Hippocampal Neurons Parallels Learning What Happens Where [J].
Komorowski, Robert W. ;
Manns, Joseph R. ;
Eichenbaum, Howard .
JOURNAL OF NEUROSCIENCE, 2009, 29 (31) :9918-9929
[66]   The Human Ventromedial Prefrontal Cortex Is Critical for Transitive Inference [J].
Koscik, Timothy R. ;
Tranel, Daniel .
JOURNAL OF COGNITIVE NEUROSCIENCE, 2012, 24 (05) :1191-1204
[67]   Neural Representations of Location Composed of Spatially Periodic Bands [J].
Krupic, Julija ;
Burgess, Neil ;
O'Keefe, John .
SCIENCE, 2012, 337 (6096) :853-857
[68]   Building machines that learn and think like people [J].
Lake, Brenden M. ;
Ullman, Tomer D. ;
Tenenbaum, Joshua B. ;
Gershman, Samuel J. .
BEHAVIORAL AND BRAIN SCIENCES, 2017, 40
[69]   Human-level concept learning through probabilistic program induction [J].
Lake, Brenden M. ;
Salakhutdinov, Ruslan ;
Tenenbaum, Joshua B. .
SCIENCE, 2015, 350 (6266) :1332-1338
[70]   Transitive inference in pigeons: Measuring the associative values of Stimuli B and D [J].
Lazareva, Olga F. ;
Wasserman, Edward A. .
BEHAVIOURAL PROCESSES, 2012, 89 (03) :244-255