The investigation of the Recuperative Organic Rankine Cycle models for the waste heat recovery on vehicles

被引:10
作者
Zhao, Mingru [1 ]
Shu, Gequn [1 ]
Tian, Hua [1 ]
Yan, Fengying [1 ]
Huang, Guangdai [1 ]
Hu, Chen [1 ]
机构
[1] Tianjin Univ, State Key Lab Engines, 92 Weijin Rd, Tianjin 300072, Peoples R China
来源
4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS | 2017年 / 129卷
关键词
Waste Heat Recovery; Vehicles; RORC; GT-Suite; Pressure drop; Transient response;
D O I
10.1016/j.egypro.2017.09.106
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Organic Rankine Cycle (ORC) has been valued for its promising application on the Waste Heat Recovery (WHR) from vehicles. And Recuperative ORC (RORC) is considered suitable for the on-board application because of its high efficiency. However, the previous investigations of RORC, which based on GT-suite, mainly focused on the steady state and didn't consider the combined model with engine. In this paper, a Basic ORC (BORC) model and 3 RORC models with different recuperative rate are combined with engine model and compared. The steady state result shows that with the recuperative rate rising, the cooling heat decreases while the net output power increases, which are beneficial to the on-board application. However, the longer response time and more charged refrigerant mass are disadvantages. Also, compared with BORC, the backpressure and performance of the engine are basically not affected when recuperator is added. The transient responses show that with the recuperative rate rising, the overshoot of the temperature and output power of RORC become more serious at the start-up phase, which may cause decomposition to the refrigerant and damage to the expander. At last, the responses of combined models under varying engine condition are studied. The results show that exhaust mass flowrate is mainly responsible for the engine backpressure variation. And RORC with higher recuperative rate has more advantages under heavy-duty engine condition. (C) 2017 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:732 / 739
页数:8
相关论文
共 50 条
  • [31] Dynamic modeling and simulation of an Organic Rankine Cycle (ORC) system for waste heat recovery
    Wei, Donghong
    Lu, Xuesheng
    Lu, Zhen
    Gu, Jianming
    APPLIED THERMAL ENGINEERING, 2008, 28 (10) : 1216 - 1224
  • [32] Study of Parameters Optimization of Organic Rankine Cycle (ORC) for Engine Waste Heat Recovery
    Zhang, Hongguang
    Wang, Enhua
    Ouyang, Minggao
    Fan, Boyuan
    ADVANCED MANUFACTURING SYSTEMS, PTS 1-3, 2011, 201-203 : 585 - +
  • [33] Radial Expander Design for an Engine Organic Rankine Cycle Waste Heat Recovery System
    Alshammari, Fuhaid
    Karvountzis-Kontakiotis, A.
    Pesiridis, A.
    Minton, Timothy
    4TH INTERNATIONAL SEMINAR ON ORC POWER SYSTEMS, 2017, 129 : 285 - 292
  • [34] Optimization of a Regenerative Organic Rankine Cycle for Engine Waste Heat Recovery by Genetic Algorithm
    Wang, Enhua
    Zhang, Hongguang
    Fan, Boyuan
    Ouyang, Minggao
    Xia, Shengzhi
    2010 THE 3RD INTERNATIONAL CONFERENCE ON COMPUTATIONAL INTELLIGENCE AND INDUSTRIAL APPLICATION (PACIIA2010), VOL VIII, 2010, : 294 - 298
  • [35] Experimental investigation on thermal OS/ORC (Oil Storage/Organic Rankine Cycle) system for waste heat recovery from diesel engine
    Shu, Gequn
    Zhao, Mingru
    Tian, Hua
    Wei, Haiqiao
    Liang, Xingyu
    Huo, Yongzhan
    Zhu, Weijie
    ENERGY, 2016, 107 : 693 - 706
  • [36] Thermodynamic analysis of an organic Rankine cycle for waste heat recovery from gas turbines
    Carcasci, Carlo
    Ferraro, Riccardo
    Miliotti, Edoardo
    ENERGY, 2014, 65 : 91 - 100
  • [37] Experimental validation of a multiple model predictive control for waste heat recovery organic Rankine cycle systems
    Hernandez, Andres
    Ruiz, Fredy
    Gusev, Sergei
    De Keyser, Robin
    Quoilin, Sylvain
    Lemort, Vincent
    APPLIED THERMAL ENGINEERING, 2021, 193
  • [38] Control of Organic Rankine Cycle for Waste Heat Recovery Based on An Optimized Predictive Model
    Liu, Kailong
    Li, Kang
    Lin, Mingming
    Zhang, Jianhua
    PROCEEDINGS OF THE 36TH CHINESE CONTROL CONFERENCE (CCC 2017), 2017, : 9349 - 9354
  • [39] Multiobjective Optimization of a Plate Heat Exchanger in a Waste Heat Recovery Organic Rankine Cycle System for Natural Gas Engines
    Valencia, Guillermo
    Nunez, Jose
    Duarte, Jorge
    ENTROPY, 2019, 21 (07)
  • [40] Life Cycle Assessment Introduced by Using Nanorefrigerant of Organic Rankine Cycle System for Waste Heat Recovery
    Yang, Yuchen
    Ma, Lin
    Yu, Jie
    Zhao, Zewen
    You, Pengfei
    JOURNAL OF RENEWABLE MATERIALS, 2023, 11 (03) : 1153 - 1179