The colored Jones polynomial and Kontsevich-Zagier series for double twist knots

被引:3
作者
Lovejoy, Jeremy [1 ]
Osburn, Robert [2 ]
机构
[1] Univ Paris, CNRS, Batiment Sophie Germain,Case Courrier 7014, F-75205 Paris 13, France
[2] Univ Coll Dublin, Sch Math & Stat, Dublin 4, Ireland
关键词
Double twist knots; colored Jones polynomial; q-series; Kontsevich-Zagier series; QUANTUM; INVARIANTS; MODULARITY; FORMULAS;
D O I
10.1142/S0218216521500310
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a result of Takata, we prove a formula for the colored Jones polynomial of the double twist knots K-(-m,K--p) and K-(-m,K-p) where m and p are positive integers. In the (-m,-p) case, this leads to new families of q-hypergeometric series generalizing the Kontsevich-Zagier series. Comparing with the cyclotomic expansion of the colored Jones polynomials of K-(m,K-p) gives a generalization of a duality at roots of unity between the Kontsevich-Zagier function and the generating function for strongly unimodal sequences.
引用
收藏
页数:28
相关论文
共 32 条