Multiscale super-amphiphobic ceramic membrane for oil aerosol removal

被引:18
作者
Wang, Yan [1 ]
Tang, Jikun [1 ]
Low, Ze-Xian [1 ,2 ]
Feng, Shasha [1 ]
Zhong, Zhaoxiang [1 ]
Xing, Weihong [1 ]
机构
[1] Nanjing Tech Univ, Natl Engn Res Ctr Special Separat Membrane, State Key Lab Mat Oriented Chem Engn, Nanjing 210009, Peoples R China
[2] Monash Univ, Dept Chem Engn, Clayton, Vic 3800, Australia
基金
中国国家自然科学基金;
关键词
SiC membrane; Super-amphiphobic; TiO2; nanocones; Oil aerosol removal; FABRICATION; SURFACE; PARTICLES; DESIGN;
D O I
10.1016/j.memsci.2021.119996
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
1H, 1H, 2H, 2H-perfluorooctyltrichlorosilane (FOTS)-grafted TiO2/SiC membrane with multiscale superamphiphobic property was prepared by solvothermal growth followed by dipping treatment. TiO2 nanocones grown on silicon carbide (SiC) help to ameliorate the surface structure and chemical properties for grafting FOTS. The resulted membrane exhibits super-amphiphobicity with water and oil (n-hexadecane) contact angles of 171.9. and 151.2., respectively. The static oil adsorption capacity of the membrane is lower than 5%, indicating excellent oil repelling performance. Such an amphiphobic ceramic membrane can be used in long-term oil filtration with comparative low and stable pressure drop (11 kPa) and high rejection rate (98.24%). This work represents a new approach to achieve a super-amphiphobic surface on a solid ceramic membrane, opening a new avenue for the application of oil aerosol removal.
引用
收藏
页数:11
相关论文
共 39 条
[1]   Effects of scavengers of Criegee intermediates and OH radicals on the formation of secondary organic aerosol in the ozonolysis of limonene [J].
Ahmad, W. ;
Coeur, C. ;
Cuisset, A. ;
Coddeville, P. ;
Tomas, A. .
JOURNAL OF AEROSOL SCIENCE, 2017, 110 :70-83
[2]   Lotus-Like Biomimetic Hierarchical Structures Developed by the Self-Assembly of Tubular Plant Waxes [J].
Bhushan, Bharat ;
Jung, Yong Chae ;
Niemietz, Adrian ;
Koch, Kerstin .
LANGMUIR, 2009, 25 (03) :1659-1666
[3]   Synthesis of perpendicular nanorod arrays with hierarchical architecture and water slipping superhydrophobic properties [J].
Bok, Hye-Mi ;
Kim, Sungwan ;
Yoo, Sang-Hoon ;
Kim, Seong Kyu ;
Park, Sungho .
LANGMUIR, 2008, 24 (08) :4168-4173
[4]   Design principles for superamphiphobic surfaces [J].
Butt, Hans-Juergen ;
Semprebon, Ciro ;
Papadopoulos, Periklis ;
Vollmer, Doris ;
Brinkmann, Martin ;
Ciccotti, Matteo .
SOFT MATTER, 2013, 9 (02) :418-428
[5]   Fabrication of nonaging superhydrophobic surfaces by packing flowerlike hematite particles [J].
Cao, Anmin ;
Cao, Liangliang ;
Gao, Di .
APPLIED PHYSICS LETTERS, 2007, 91 (03)
[6]   Transparent superhydrophobic and highly oleophobic coatings [J].
Cao, Liangliang ;
Gao, Di .
FARADAY DISCUSSIONS, 2010, 146 :57-65
[7]   Porosity control of porous silicon carbide ceramics [J].
Chae, Su-Ho ;
Kim, Young-Wook ;
Song, In-Hyuck ;
Kim, Hai-Doo ;
Narisawa, Masaki .
JOURNAL OF THE EUROPEAN CERAMIC SOCIETY, 2009, 29 (13) :2867-2872
[8]   Biomimetic Multi-Functional Superamphiphobic FOTS-TiO2 Particles beyond Lotus Leaf [J].
Chen, Liwei ;
Guo, Zhiguang ;
Liu, Weimin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (40) :27188-27198
[9]   Capillary force restoration of droplet on superhydrophobic ribbed nano-needles arrays [J].
Chen, Qinwen ;
Yao, Xi ;
Xu, Liang ;
Li, Qikai ;
Song, Yanlin ;
Jiang, Lei .
SOFT MATTER, 2010, 6 (11) :2470-2474
[10]   Surface roughness measurement method based on multi-parameter modeling learning [J].
Chen, Suting ;
Feng, Rui ;
Zhang, Chuang ;
Zhang, Yanyan .
MEASUREMENT, 2018, 129 :664-676