Weaving Schauder frames

被引:43
作者
Casazza, Peter G. [1 ]
Freeman, Daniel [2 ]
Lynch, Richard G. [1 ]
机构
[1] Univ Missouri, Dept Math, Columbia, MO 65211 USA
[2] St Louis Univ, Dept Math & Comp Sci, St Louis, MO 63103 USA
基金
美国国家科学基金会;
关键词
Schauder frames; Preprocessing; Distributed processing; Perturbations; ATOMIC DECOMPOSITIONS;
D O I
10.1016/j.jat.2016.07.001
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We extend the concept of weaving Hilbert space frames to the Banach space setting. Similar to frames in a Hilbert space, we show that for any two approximate Schauder frames for a Banach space, every weaving is an approximate Schauder frame if and only if there is a uniform constant C >= 1 such that every weaving is a C-approximate Schauder frame. We also study weaving Schauder bases, where it is necessary to introduce two notions of weaving. On one hand, we can ask if two Schauder bases are woven when considered as Schauder frames with their biorthogonal functionals, and alternatively, we can ask if each weaving of two Schauder bases remains a Schauder basis. We will prove that these two notions coincide when all weavings are unconditional, but otherwise they can be different. Lastly, we prove two perturbation theorems for approximate Schauder frames. (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:42 / 60
页数:19
相关论文
共 14 条
[1]  
[Anonymous], 2016, Appl. Numer. Harmon. Anal
[2]  
Bemrose T., ARXIV150303947
[3]   Coefficient quantization for frames in Banach spaces [J].
Casazza, P. G. ;
Dilworth, S. J. ;
Odell, E. ;
Schlumprecht, Th. ;
Zsak, A. .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 348 (01) :66-86
[4]  
Casazza P.G., 2013, Finite Frames: Theory and Applications
[5]  
Casazza P.G., 2015, P SAMPTA
[6]   A Brief Introduction to Hilbert Space Frame Theory and its Applications [J].
Casazza, Peter G. ;
Lynch, Richard G. .
FINITE FRAME THEORY: A COMPLETE INTRODUCTION TO OVERCOMPLETENESS, 2016, 73 :1-51
[7]  
Casazza PG., 1999, CONT MATH, V247, P149, DOI DOI 10.1090/C0NM/247/03801.MR1738089
[8]   Perturbations of Frames [J].
Chen, Dong Yang ;
Li, Lei ;
Zheng, Ben Tuo .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2014, 30 (07) :1089-1108
[9]  
Deepshikha L.K., PREPRINT
[10]  
Fabian M, 2001, CMS BOOKS MATH, V8