Soliton interaction control through dispersion and nonlinear effects for the fifth-order nonlinear Schrodinger equation

被引:89
作者
Ma, Guoli [1 ,2 ,3 ]
Zhao, Jianbo [1 ,2 ]
Zhou, Qin [4 ,5 ]
Biswas, Anjan [5 ,6 ,7 ,8 ]
Liu, Wenjun [1 ,2 ]
机构
[1] Beijing Univ Posts & Telecommun, State Key Lab Informat Photon & Opt Commun, POB 122, Beijing 100876, Peoples R China
[2] Beijing Univ Posts & Telecommun, Sch Sci, POB 122, Beijing 100876, Peoples R China
[3] Binzhou Univ, Inst Aeronaut Engn, Binzhou 256603, Peoples R China
[4] Wuhan Text Univ, Sch Math & Phys Sci, Wuhan 430200, Peoples R China
[5] King Abdulaziz Univ, Math Modeling & Appl Computat MMAC Res Grp, Dept Math, Jeddah 21589, Saudi Arabia
[6] Natl Res Nucl Univ, Dept Appl Math, 31 Kashirskoe Hwy, Moscow 115409, Russia
[7] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, ZA-0204 Pretoria, South Africa
[8] Alabama A&M Univ, Dept Phys Chem & Math, Normal, AL 35762 USA
基金
中国国家自然科学基金;
关键词
Soliton; Hirota method; Nonlinear Schrodinger equation; Soliton interactions; VARIABLE-COEFFICIENTS; DARK SOLITONS; EVOLUTION EQUATION; WAVE SOLUTIONS; TRANSMISSION; SYSTEM; BEHAVIORS; FIBER;
D O I
10.1007/s11071-021-06915-0
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Optical fiber communication has developed rapidly because of the needs of the information age. Here, the variable coefficients fifth-order nonlinear Schrodinger equation (NLS), which can be used to describe the transmission of femtosecond pulse in the optical fiber, is studied. By virtue of the Hirota method, we get the one-soliton and two-soliton solutions. Interactions between solitons are presented, and the soliton stability is discussed through adjusting the values of dispersion and nonlinear effects. Results may potentially be useful for optical communications such as all-optical switches or the study of soliton control.
引用
收藏
页码:2479 / 2484
页数:6
相关论文
共 45 条
[1]   Dynamical stabilization of solitons in cubic-quintic nonlinear Schrodinger model [J].
Abdullaev, FK ;
Garnier, J .
PHYSICAL REVIEW E, 2005, 72 (03)
[2]   Extended nonlinear Schrodinger equation with higher-order odd and even terms and its rogue wave solutions [J].
Ankiewicz, Adrian ;
Wang, Yan ;
Wabnitz, Stefan ;
Akhmediev, Nail .
PHYSICAL REVIEW E, 2014, 89 (01)
[3]   Higher-order integrable evolution equation and its soliton solutions [J].
Ankiewicz, Adrian ;
Akhmediev, Nail .
PHYSICS LETTERS A, 2014, 378 (04) :358-361
[4]   Symmetric and Anti-Symmetric Solitons of the Fractional Second- and Third-Order Nonlinear Schrodinger Equation [J].
Cao, Qi-Hao ;
Dai, Chao-Qing .
CHINESE PHYSICS LETTERS, 2021, 38 (09)
[5]   Mixed-type vector solitons for the coupled cubic-quintic nonlinear Schrodinger equations with variable coefficients in an optical fiber [J].
Chai, Jun ;
Tian, Bo ;
Wang, Yu-Feng ;
Zhen, Hui-Ling ;
Wang, Yun-Po .
PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2015, 434 :296-304
[6]   SOLITON SWITCH USING BIREFRINGENT OPTICAL FIBERS [J].
CHEN, CJ ;
WAI, PKA ;
MENYUK, CR .
OPTICS LETTERS, 1990, 15 (09) :477-479
[7]   INTERNAL-WAVE SOLITONS OF FLUIDS WITH FINITE DEPTH [J].
CHEN, HH ;
LEE, YC .
PHYSICAL REVIEW LETTERS, 1979, 43 (04) :264-266
[8]   Vector multipole and vortex solitons in two-dimensional Kerr media [J].
Dai, Chao-Qing ;
Zhou, Guo-Quan ;
Chen, Rui-Pin ;
Lai, Xian-Jing ;
Zheng, Jun .
NONLINEAR DYNAMICS, 2017, 88 (04) :2629-2635
[9]   TRANSMISSION OF STATIONARY NONLINEAR OPTICAL PULSES IN DISPERSIVE DIELECTRIC FIBERS .1. ANOMALOUS DISPERSION [J].
HASEGAWA, A ;
TAPPERT, F .
APPLIED PHYSICS LETTERS, 1973, 23 (03) :142-144
[10]  
Hirota R, 2004, DIRECT METHOD SOLITO, V155