New Approach for DOA Estimation in MIMO Radar With Nonorthogonal Waveforms

被引:9
作者
Mao, Chenxing [1 ,2 ]
Wen, Fangqing [1 ,2 ]
Zhang, Zijing [3 ]
Gong, Ziheng [4 ]
机构
[1] Yangtze Univ, Sch Elect & Informat, Jingzhou 434023, Peoples R China
[2] Yangtze Univ, Natl Demonstrat Ctr Expt Elect & Elect Educ, Jingzhou 434023, Peoples R China
[3] Xidian Univ, Natl Lab Radar Signal Proc, Xian 710071, Peoples R China
[4] Beijing Univ Posts & Telecommun, Telecommun Engn Management, Beijing 100876, Peoples R China
基金
中国国家自然科学基金;
关键词
Sensor signals processing; Cramer-Rao bound (CRB); direction-of-arrival (DOA) estimation; multiple-input multiple-output (MIMO) radar; nonorthogonal waveforms; spatially colored noise;
D O I
10.1109/LSENS.2019.2920414
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
It is desirable to emit orthogonal waveforms in multiple-input multiple-output (MIMO) radar systems. Unfortunately, the waveform orthogonality may not be always guaranteed in practice. Nonorthogonal transmit waveforms will incur two challenges i.e., spatially colored noise and nonideal virtual direction matrix, for direction-of-arrival (DOA) estimation in colocated MIMO radar. In this article, a temporal cross-correlation matrix-based algorithm is proposed to overcome the above drawbacks. Also, the stochastic Cramer-Rao bound (CRB) is derived. The proposed algorithm does not require the prior knowledge of the waveform correlation matrix. Moreover, it is attractive from the perspective of efficiency as well as accuracy. Numerical experiments demonstrate the effectiveness of our algorithm.
引用
收藏
页数:4
相关论文
共 19 条
[1]   Target detection and localization using. MIMO radars and sonars [J].
Bekkerman, Ilya ;
Tabrikian, Joseph .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2006, 54 (10) :3873-3883
[2]   Multi-SVD based subspace estimation to improve angle estimation accuracy in bistatic MIMO radar [J].
Cheng, Yuanbing ;
Yu, Rusheng ;
Gu, Hong ;
Su, Weimin .
SIGNAL PROCESSING, 2013, 93 (07) :2003-2009
[3]   Communication-Aware Waveform Design for MIMO Radar With Good Transmit Beampattern [J].
Cheng, Ziyang ;
Han, Chunlin ;
Liao, Bin ;
Hen, Zishu ;
Li, Jun .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (21) :5549-5562
[4]   MIMO Radar Waveform Design With PAPR and Similarity Constraints [J].
Cheng, Ziyang ;
He, Zishu ;
Liao, Bin ;
Fang, Min .
IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2018, 66 (04) :968-981
[5]   Angle estimation using ESPRIT in MIMO radar [J].
Duofang, C. ;
Baixiao, C. ;
Guodong, Q. .
ELECTRONICS LETTERS, 2008, 44 (12) :770-770
[6]   Fast Angle Estimation for MIMO Radar With Nonorthogonal Waveforms [J].
Liao, Bin .
IEEE TRANSACTIONS ON AEROSPACE AND ELECTRONIC SYSTEMS, 2018, 54 (04) :2091-2096
[7]   Maximum likelihood estimation of DOD and DOA for bistatic MIMO radar [J].
Tang, Bo ;
Tang, Jun ;
Zhang, Yu ;
Zheng, Zhidong .
SIGNAL PROCESSING, 2013, 93 (05) :1349-1357
[8]   Nuclear norm minimization framework for DOA estimation in MIMO radar [J].
Wang, Xianpeng ;
Wang, Luyun ;
Li, Xiumei ;
Bi, Guoan .
SIGNAL PROCESSING, 2017, 135 :147-152
[9]   A sparse representation scheme for angle estimation in monostatic MIMO radar [J].
Wang, Xianpeng ;
Wang, Wei ;
Liu, Jing ;
Li, Xin ;
Wang, Junxiang .
SIGNAL PROCESSING, 2014, 104 :258-263
[10]   Computationally Efficient DOA Estimation Algorithm for MIMO Radar With Imperfect Waveforms [J].
Wen, Fangqing .
IEEE COMMUNICATIONS LETTERS, 2019, 23 (06) :1037-1040