SPECTRAL ESTIMATES FOR A NONHOMOGENEOUS DIFFERENCE PROBLEM

被引:19
作者
Kristaly, Alexandru [2 ,3 ]
Mihailescu, Mihai [1 ,3 ]
Radulescu, Vicentiu [1 ,4 ]
Tersian, Stepan [5 ]
机构
[1] Univ Craiova, Dept Math, Craiova 200585, Romania
[2] Univ Babes Bolyai, Dept Econ, Cluj Napoca 400591, Romania
[3] Cent European Univ, Dept Math, H-1051 Budapest, Hungary
[4] Acad Romana, Inst Math Simion Stoilow, Bucharest 014700, Romania
[5] Univ Rousse, Dept Math Anal, Rousse 7017, Bulgaria
关键词
Eigenvalue problem; discrete boundary value problem; critical point; continuous spectrum; BOUNDARY-VALUE-PROBLEMS; MULTIPLE POSITIVE SOLUTIONS; VARIATIONAL-METHODS; EIGENVALUE; LAPLACIAN;
D O I
10.1142/S0219199710004093
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study an eigenvalue problem in the framework of difference equations. We show that there exist two positive constants lambda(0) and lambda(1) verifying lambda(0) <= lambda(1) such that any lambda is an element of (0, lambda(0)) is not an eigenvalue of the problem, while any lambda [lambda(1), infinity) is an eigenvalue of the problem. Some estimates for lambda(0) and lambda(1) are also given.
引用
收藏
页码:1015 / 1029
页数:15
相关论文
共 15 条
  • [1] Multiple positive solutions of singular discrete p-Laplacian problems via variational methods
    Agarwal, Ravi P.
    Perera, Kanishka
    O'Regan, Donal
    [J]. ADVANCES IN DIFFERENCE EQUATIONS, 2005, 2005 (02) : 93 - 99
  • [2] Agarwal Ravil P, 2000, DIFFERENCE EQUATIONS
  • [3] Agarwal RP, 2004, NONLINEAR ANAL-THEOR, V58, P69, DOI 10.1016/j.na.2004.11.012
  • [4] [Anonymous], COLLECTION MATH APPL
  • [5] [Anonymous], 1996, VARIATIONAL METHODS, DOI DOI 10.1007/978-3-662-03212-1
  • [6] [Anonymous], 2001, INTRO APPL
  • [7] Bereanu C., 2006, THESIS U CATHOLIQUE
  • [8] Multiple solutions for discrete boundary value problems
    Cabada, Alberto
    Iannizzotto, Antonio
    Tersian, Stepan
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2009, 356 (02) : 418 - 428
  • [9] Existence theorems for second-order discrete boundary value problems
    Cai, Xiaochun
    Yu, Jianshe
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2006, 320 (02) : 649 - 661
  • [10] Faber G., 1923, MUNCH BER, V1923, P169