Entanglement negativity in random spin chains

被引:83
作者
Ruggiero, Paola [1 ]
Alba, Vincenzo
Calabrese, Pasquale
机构
[1] Int Sch Adv Studies SISSA, Via Bonomea 265, I-34136 Trieste, Italy
关键词
MATRIX RENORMALIZATION-GROUP; DENSITY-MATRICES; SEPARABLE STATES; ENTROPY; SYSTEMS; MODELS; VOLUME; SET;
D O I
10.1103/PhysRevB.94.035152
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We investigate the logarithmic negativity in strongly disordered spin chains in the random-singlet phase. We focus on the spin-1/2 random Heisenberg chain and the random XX chain. We find that for two arbitrary intervals, the disorder-averaged negativity and the mutual information are proportional to the number of singlets shared between the two intervals. Using the strong-disorder renormalization group (SDRG), we prove that the negativity of two adjacent intervals grows logarithmically with the intervals' length. In particular, the scaling behavior is the same as in conformal field theory, but with a different prefactor. For two disjoint intervals the negativity is given by a universal simple function of the cross ratio, reflecting scale invariance. As a function of the distance of the two intervals, the negativity decays algebraically in contrast with the exponential behavior in clean models. We confirm our predictions using a numerical implementation of the SDRG method. Finally, we also implement density matrix renormalization group simulations for the negativity in open spin chains. The chains accessible in the presence of strong disorder are not sufficiently long to provide a reliable confirmation of the SDRG results.
引用
收藏
页数:15
相关论文
共 111 条
[1]   Classical mutual information in mean-field spin glass models [J].
Alba, Vincenzo ;
Inglis, Stephen ;
Pollet, Lode .
PHYSICAL REVIEW B, 2016, 93 (09)
[2]   Entanglement negativity and conformal field theory: a Monte Carlo study [J].
Alba, Vincenzo .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2013,
[3]   Entanglement entropy of two disjoint intervals in c=1 theories [J].
Alba, Vincenzo ;
Tagliacozzo, Luca ;
Calabrese, Pasquale .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2011,
[4]   Entanglement structure of the two-channel Kondo model [J].
Alkurtass, Bedoor ;
Bayat, Abolfazl ;
Affleck, Ian ;
Bose, Sougato ;
Johannesson, Henrik ;
Sodano, Pasquale ;
Sorensen, Erik S. ;
Le Hur, Karyn .
PHYSICAL REVIEW B, 2016, 93 (08)
[5]   Universal Dynamics and Renormalization in Many-Body-Localized Systems [J].
Altman, Ehud ;
Vosk, Ronen .
ANNUAL REVIEW OF CONDENSED MATTER PHYSICS, VOL 6, 2015, 6 :383-409
[6]   Entanglement in many-body systems [J].
Amico, Luigi ;
Fazio, Rosario ;
Osterloh, Andreas ;
Vedral, Vlatko .
REVIEWS OF MODERN PHYSICS, 2008, 80 (02) :517-576
[7]  
[Anonymous], ARXIV160305185
[8]   Entanglement properties of the harmonic chain [J].
Audenaert, K ;
Eisert, J ;
Plenio, MB ;
Werner, RR .
PHYSICAL REVIEW A, 2002, 66 (04) :14
[9]   Unbounded Growth of Entanglement in Models of Many-Body Localization [J].
Bardarson, Jens H. ;
Pollmann, Frank ;
Moore, Joel E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (01)
[10]   An order parameter for impurity systems at quantum criticality [J].
Bayat, Abolfazl ;
Johannesson, Henrik ;
Bose, Sougato ;
Sodano, Pasquale .
NATURE COMMUNICATIONS, 2014, 5