Transcriptional Architecture of Synaptic Communication Delineates GABAergic Neuron Identity

被引:279
作者
Paul, Anirban [1 ]
Crow, Megan [1 ]
Raudales, Ricardo [1 ,2 ]
He, Miao [1 ,3 ]
Gillis, Jesse [1 ]
Huang, Z. Josh [1 ]
机构
[1] Cold Spring Harbor Lab, Cold Spring Harbor, NY 11724 USA
[2] SUNY Stony Brook, Program Neurosci, Stony Brook, NY 11790 USA
[3] Fudan Univ, Inst Brain Sci, Collaborat Innovat Ctr Brain Sci, State Key Lab Med Neurobiol, Shanghai, Peoples R China
关键词
CELL-TYPES; NEUROTRANSMITTER RELEASE; GENE-EXPRESSION; CLASSIFICATION; INTERNEURONS; RECEPTORS; CONNECTIVITY; EXOCYTOSIS; CIRCUITS; TAXONOMY;
D O I
10.1016/j.cell.2017.08.032
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Understanding the organizational logic of neural circuits requires deciphering the biological basis of neuronal diversity and identity, but there is no consensus on how neuron types should be defined. We analyzed single-cell transcriptomes of a set of anatomically and physiologically characterized cortical GABAergic neurons and conducted a computational genomic screen for transcriptional profiles that distinguish them from one another. We discovered that cardinal GABAergic neuron types are delineated by a transcriptional architecture that encodes their synaptic communication patterns. This architecture comprises 6 categories of similar to 40 gene families, including cell-adhesion molecules, transmitter-modulator receptors, ion channels, signaling proteins, neuropeptides and vesicular release components, and transcription factors. Combinatorial expression of select members across families shapes a multi-layered molecular scaffold along the cell membrane that may customize synaptic connectivity patterns and input-output signaling properties. This molecular genetic framework of neuronal identity integrates cell phenotypes along multiple axes and provides a foundation for discovering and classifying neuron types.
引用
收藏
页码:522 / +
页数:38
相关论文
共 64 条
[1]   Diverse roles for ionotropic glutamate receptors on inhibitory interneurons in developing and adult brain [J].
Akguel, Guelcan ;
McBain, Chris J. .
JOURNAL OF PHYSIOLOGY-LONDON, 2016, 594 (19) :5471-5490
[2]  
Alberts B., 2014, MOL BIOL CELL, P850
[3]   Towards the automatic classification of neurons [J].
Armananzas, Ruben ;
Ascoli, Giorgio A. .
TRENDS IN NEUROSCIENCES, 2015, 38 (05) :307-318
[4]   Basket cell dichotomy in microcircuit function [J].
Armstrong, Caren ;
Soltesz, Ivan .
JOURNAL OF PHYSIOLOGY-LONDON, 2012, 590 (04) :683-694
[5]   Tox: a multifunctional transcription factor and novel regulator of mammalian corticogenesis [J].
Artegiani, Benedetta ;
Domingues, Antonio M. de Jesus ;
Alonso, Sara Bragado ;
Brandl, Elisabeth ;
Massalini, Simone ;
Dahl, Andreas ;
Calegari, Federico .
EMBO JOURNAL, 2015, 34 (07) :896-910
[6]   Gene expression in cortical interneuron precursors is prescient of their mature function [J].
Batista-Brito, Renata ;
Machold, Robert ;
Klein, Corinna ;
Fishell, Gord .
CEREBRAL CORTEX, 2008, 18 (10) :2306-2317
[7]  
Cajal S.Ramnn y., 1892, Rev Ciencias Med, V18, P457
[8]   Activity-Dependent IGF-1 Exocytosis Is Controlled by the Ca2+-Sensor Synaptotagmin-10 [J].
Cao, Peng ;
Maximov, Anton ;
Suedhof, Thomas C. .
CELL, 2011, 145 (02) :300-311
[9]  
Chambers John M., 1983, GRAPHICAL METHODS DA, p[4, 47]
[10]   REGULATION OF SMALL GTPases BY GEFs, GAPs, AND GDIs [J].
Cherfils, Jacqueline ;
Zeghouf, Mahel .
PHYSIOLOGICAL REVIEWS, 2013, 93 (01) :269-309