Stochastic resonance at criticality in a network model of the human cortex

被引:33
作者
Vazquez-Rodriguez, Bertha [1 ]
Avena-Koenigsberger, Andrea [2 ]
Sporns, Olaf [2 ]
Griffa, Alessandra [3 ,4 ]
Hagmann, Patric [3 ,4 ]
Larralde, Hernan [1 ]
机构
[1] Univ Nacl Autonoma Mexico, Inst Ciencia Fis, Cuernavaca, Morelos, Mexico
[2] Indiana Univ, Dept Psychol & Brain Sci, Bloomington, IN USA
[3] Lausanne Univ Hosp CHUV, Dept Radiol, Lausanne, Switzerland
[4] Univ Lausanne UNIL, Lausanne, Switzerland
基金
瑞士国家科学基金会;
关键词
SLEEP-WAKE TRANSITIONS; HUMAN CEREBRAL-CORTEX; NEURONAL AVALANCHES; HUMAN CONNECTOME; DYNAMICS; SEGREGATION; INTEGRATION; NOISE; MECHANORECEPTORS; COMMUNICATION;
D O I
10.1038/s41598-017-13400-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Stochastic resonance is a phenomenon in which noise enhances the response of a system to an input signal. The brain is an example of a system that has to detect and transmit signals in a noisy environment, suggesting that it is a good candidate to take advantage of stochastic resonance. In this work, we aim to identify the optimal levels of noise that promote signal transmission through a simple network model of the human brain. Specifically, using a dynamic model implemented on an anatomical brain network (connectome), we investigate the similarity between an input signal and a signal that has traveled across the network while the system is subject to different noise levels. We find that non-zero levels of noise enhance the similarity between the input signal and the signal that has traveled through the system. The optimal noise level is not unique; rather, there is a set of parameter values at which the information is transmitted with greater precision, this set corresponds to the parameter values that place the system in a critical regime. The multiplicity of critical points in our model allows it to adapt to different noise situations and remain at criticality.
引用
收藏
页数:12
相关论文
共 72 条
[41]   Dynamics of sleep-wake transitions during sleep [J].
Lo, CC ;
Amaral, LAN ;
Havlin, S ;
Ivanov, PC ;
Penzel, T ;
Peter, JH ;
Stanley, HE .
EUROPHYSICS LETTERS, 2002, 57 (05) :625-631
[42]   Temporal correlations in neuronal avalanche occurrence [J].
Lombardi, F. ;
Herrmann, H. J. ;
Plenz, D. ;
de Arcangelis, L. .
SCIENTIFIC REPORTS, 2016, 6
[43]   Balance between Excitation and Inhibition Controls the Temporal Organization of Neuronal Avalanches [J].
Lombardi, F. ;
Herrmann, H. J. ;
Perrone-Capano, C. ;
Plenz, D. ;
de Arcangelis, L. .
PHYSICAL REVIEW LETTERS, 2012, 108 (22)
[44]   Internal stochastic resonance in the coherence between spinal and cortical neuronal ensembles in the cat [J].
Manjarrez, E ;
Rojas-Piloni, JG ;
Méndez, I ;
Martínez, L ;
Vélez, D ;
Vázquez, D ;
Flores, A .
NEUROSCIENCE LETTERS, 2002, 326 (02) :93-96
[45]  
MANTEGNA RN, 1994, PHYS REV E, V49, pR1792
[46]   What Is Stochastic Resonance? Definitions, Misconceptions, Debates, and Its Relevance to Biology [J].
McDonnell, Mark D. ;
Abbott, Derek .
PLOS COMPUTATIONAL BIOLOGY, 2009, 5 (05)
[47]   OBSERVATION OF STOCHASTIC RESONANCE IN A RING LASER [J].
MCNAMARA, B ;
WIESENFELD, K ;
ROY, R .
PHYSICAL REVIEW LETTERS, 1988, 60 (25) :2626-2629
[48]   Improved Sensorimotor Performance via Stochastic Resonance [J].
Mendez-Balbuena, Ignacio ;
Manjarrez, Elias ;
Schulte-Moenting, Juergen ;
Huethe, Frank ;
Tapia, Jesus A. ;
Hepp-Reymond, Marie-Claude ;
Kristeva, Rumyana .
JOURNAL OF NEUROSCIENCE, 2012, 32 (36) :12612-12618
[49]   Cooperative and Competitive Spreading Dynamics on the Human Connectome [J].
Misic, Bratislav ;
Betzel, Richard F. ;
Nematzadeh, Azadeh ;
Goni, Joaquin ;
Griffa, Alessandra ;
Hagmann, Patric ;
Flammini, Alessandro ;
Ahn, Yong-Yeol ;
Sporns, Olaf .
NEURON, 2015, 86 (06) :1518-1529
[50]   Organization of Excitable Dynamics in Hierarchical Biological Networks [J].
Mueller-Linow, Mark ;
Hilgetag, Claus C. ;
Huett, Marc-Thorsten .
PLOS COMPUTATIONAL BIOLOGY, 2008, 4 (09)