The challenge and opportunity of battery lifetime prediction from field data

被引:253
作者
Sulzer, Valentin [1 ]
Mohtat, Peyman [1 ]
Aitio, Antti [2 ]
Lee, Suhak [1 ]
Yeh, Yen T. [3 ]
Steinbacher, Frank [4 ]
Khan, Muhammad Umer [5 ]
Lee, Jang Woo [6 ]
Siegel, Jason B. [1 ]
Stefanopoulou, Anna G. [1 ]
Howey, David A. [2 ,7 ]
机构
[1] Univ Michigan, Ann Arbor, MI 48109 USA
[2] Univ Oxford, Oxford, England
[3] Voltaiq, Berkeley, CA USA
[4] Siemens, Erlangen, Germany
[5] Continental AG, Regensburg, Germany
[6] Samsung SDI Co, Yongin 17084, South Korea
[7] Faraday Inst, Harwell, Berks, England
基金
美国国家科学基金会;
关键词
LITHIUM-ION BATTERIES; OF-HEALTH ESTIMATION; GAUSSIAN PROCESS REGRESSION; PATH DEPENDENCE; DEGRADATION MECHANISMS; CHARGE ESTIMATION; CAPACITY FADE; AGING MODEL; CYCLE LIFE; 2ND LIFE;
D O I
10.1016/j.joule.2021.06.005
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Accurate battery life prediction is a critical part of the business case for electric vehicles, stationary energy storage, and nascent applications such as electric aircraft. Existing methods are based on relatively small but well-designed lab datasets and controlled test conditions but incorporating field data is crucial to build a complete picture of how cells age in real-world situations. This comes with additional challenges because end-use applications have uncontrolled operating conditions, less accurate sensors, data collection and storage concerns, and infrequent access to validation checks. We explore a range of techniques for estimating lifetime from lab and field data and suggest that combining machine learning approaches with physical models is a promising method, enabling inference of battery life from noisy data, assessment of second-life condition, and extrapolation to future usage conditions. This work highlights the opportunity for insights gained from field data to reduce battery costs and improve designs.
引用
收藏
页码:1934 / 1955
页数:22
相关论文
共 132 条
[1]   Electrochemical Thermal-Mechanical Modelling of Stress Inhomogeneity in Lithium-Ion Pouch Cells [J].
Ai, Weilong ;
Kraft, Ludwig ;
Sturm, Johannes ;
Jossen, Andreas ;
Wu, Billy .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2019, 167 (01)
[2]  
Aitio A., 2020, ASME 2020 DYN SYST C, DOI [10.1115/DSCC2020-3180, DOI 10.1115/DSCC2020-3180]
[3]  
An F., 1993, SAE TECHNICAL PAPER, DOI [10.4271/930328, DOI 10.4271/930328]
[4]   Mathematical modeling of the lithium deposition overcharge reaction in lithium-ion batteries using carbon-based negative electrodes [J].
Arora, P ;
Doyle, M ;
White, RE .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1999, 146 (10) :3543-3553
[5]   Theory of battery ageing in a lithium-ion battery: Capacity fade, nonlinear ageing and lifetime prediction [J].
Atalay, Selcuk ;
Sheikh, Muhammad ;
Mariani, Alessandro ;
Merla, Yu ;
Bower, Ed ;
Widanage, W. Dhammika .
JOURNAL OF POWER SOURCES, 2020, 478 (478)
[6]   Perspective-Combining Physics and Machine Learning to Predict Battery Lifetime [J].
Aykol, Muratahan ;
Gopal, Chirranjeevi Balaji ;
Anapolsky, Abraham ;
Herring, Patrick K. ;
van Vlijmen, Bruis ;
Berliner, Marc D. ;
Bazant, Martin Z. ;
Braatz, Richard D. ;
Chueh, William C. ;
Storey, Brian D. .
JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 2021, 168 (03)
[7]   Fostering a Sustainable Community in Batteries [J].
Baker, Jenny A. ;
Beuse, Martin ;
DeCaluwe, Steven C. ;
Jing, Linda W. ;
Khoo, Edwin ;
Sripad, Shashank ;
Ulissi, Ulderico ;
Verma, Ankit ;
Wang, Andrew A. ;
Yeh, Yen T. ;
Yiu, Nicholas ;
Howey, David A. ;
Viswanathan, Venkatasubramanian .
ACS ENERGY LETTERS, 2020, 5 (07) :2361-2366
[8]   Critical review of state of health estimation methods of Li-ion batteries for real applications [J].
Berecibar, M. ;
Gandiaga, I. ;
Villarreal, I. ;
Omar, N. ;
Van Mierlo, J. ;
Van den Bossche, P. .
RENEWABLE & SUSTAINABLE ENERGY REVIEWS, 2016, 56 :572-587
[9]  
Bills A., 2020, ARXIV, DOI [10.26434/chemrxiv.12616169, DOI 10.26434/CHEMRXIV.12616169]
[10]   Degradation diagnostics for lithium ion cells [J].
Birkl, Christoph R. ;
Roberts, Matthew R. ;
McTurk, Euan ;
Bruce, Peter G. ;
Howey, David A. .
JOURNAL OF POWER SOURCES, 2017, 341 :373-386