Global solution to the nematic liquid crystal flows with heat effect

被引:4
作者
Bian, Dongfen [1 ,2 ]
Xiao, Yao [3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
[3] Chinese Univ Hong Kong, IMS, Room 614,Acad Bldg 1, Shatin, Hong Kong, Peoples R China
关键词
Nematic liquid crystal; Strong solution; Local solution; Maximal regularity; Heat effect; WEAK SOLUTIONS; EXISTENCE; MODEL; REGULARITY; UNIQUENESS; VISCOSITY;
D O I
10.1016/j.jde.2017.06.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The temperature-dependent incompressible nematic liquid crystal flows in a bounded domain Omega subset of R-N (N = 2, 3) are studied in this paper. Following Danchin's method in [7], we use a localization argument to recover the maximal regularity of Stokes equation with variable viscosity, by which we first prove the local existence of a unique strong solution, then extend it to a global one provided that the initial data is a sufficiently small perturbation around the trivial equilibrium state. This paper also generalizes Hu-Wang's result in [21] to the non-isothermal case. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:5298 / 5329
页数:32
相关论文
共 44 条
[21]   Global Solution to the Three-Dimensional Incompressible Flow of Liquid Crystals [J].
Hu, Xianpeng ;
Wang, Dehua .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2010, 296 (03) :861-880
[22]  
Huang JR, 2014, COMMUN MATH PHYS, V331, P805, DOI 10.1007/s00220-014-2079-9
[23]   Finite Time Singularity of the Nematic Liquid Crystal Flow in Dimension Three [J].
Huang, Tao ;
Lin, Fanghua ;
Liu, Chun ;
Wang, Changyou .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2016, 221 (03) :1223-1254
[24]   REMARKS OF GLOBAL WELLPOSEDNESS OF LIQUID CRYSTAL FLOWS AND HEAT FLOWS OF HARMONIC MAPS IN TWO DIMENSIONS [J].
Lei, Zhen ;
Li, Dong ;
Zhang, Xiaoyi .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 142 (11) :3801-3810
[25]  
Leslie F. M., 1979, Theory of Flow Phenomenon in Liquid Crystals, Advances in Liquid Crystals, VVol. 4
[26]  
LESLIE FM, 1968, ARCH RATION MECH AN, V28, P265
[27]   GLOBAL EXISTENCE OF WEAK SOLUTIONS TO THE NON-ISOTHERMAL NEMATIC LIQUID CRYSTALS IN 2D [J].
Li, Jinkai ;
Xin, Zhouping .
ACTA MATHEMATICA SCIENTIA, 2016, 36 (04) :973-1014
[28]   On the uniqueness of weak solutions to the Ericksen-Leslie liquid crystal model in R2 [J].
Li, Jinkai ;
Titi, Edriss S. ;
Xin, Zhouping .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2016, 26 (04) :803-822
[29]  
Lin F., 1996, DISC CONTIN DYN SYST, V2, P1, DOI DOI 10.3934/dcds.1996.2.1
[30]   Global Existence of Weak Solutions of the Nematic Liquid Crystal Flow in Dimension Three [J].
Lin, Fanghua ;
Wang, Changyou .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2016, 69 (08) :1532-1571