Global solution to the nematic liquid crystal flows with heat effect

被引:4
作者
Bian, Dongfen [1 ,2 ]
Xiao, Yao [3 ]
机构
[1] Beijing Inst Technol, Sch Math & Stat, Beijing 100081, Peoples R China
[2] Beijing Inst Technol, Beijing Key Lab MCAACI, Beijing 100081, Peoples R China
[3] Chinese Univ Hong Kong, IMS, Room 614,Acad Bldg 1, Shatin, Hong Kong, Peoples R China
关键词
Nematic liquid crystal; Strong solution; Local solution; Maximal regularity; Heat effect; WEAK SOLUTIONS; EXISTENCE; MODEL; REGULARITY; UNIQUENESS; VISCOSITY;
D O I
10.1016/j.jde.2017.06.019
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The temperature-dependent incompressible nematic liquid crystal flows in a bounded domain Omega subset of R-N (N = 2, 3) are studied in this paper. Following Danchin's method in [7], we use a localization argument to recover the maximal regularity of Stokes equation with variable viscosity, by which we first prove the local existence of a unique strong solution, then extend it to a global one provided that the initial data is a sufficiently small perturbation around the trivial equilibrium state. This paper also generalizes Hu-Wang's result in [21] to the non-isothermal case. (C) 2017 Elsevier Inc. All rights reserved.
引用
收藏
页码:5298 / 5329
页数:32
相关论文
共 44 条
[1]   NONSTATIONARY STOKES SYSTEM WITH VARIABLE VISCOSITY IN BOUNDED AND UNBOUNDED DOMAINS [J].
Abels, Helmut .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES S, 2010, 3 (02) :141-157
[2]   On Stokes operators with variable viscosity in bounded and unbounded domains [J].
Abels, Helmut ;
Terasawa, Yutaka .
MATHEMATISCHE ANNALEN, 2009, 344 (02) :381-429
[3]  
Amann H., 1995, Abstract Linear Theory
[4]  
[Anonymous], 2003, SOBOLEV SPACES
[5]   LP-theory for a class of non-newtonian fluids [J].
Bothe, Dieter ;
Pruess, Jan .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2007, 39 (02) :379-421
[6]  
Chandrasekhar S., 1992, LIQUID CRYSTALS
[7]   Density-dependent incompressible fluids in bounded domains [J].
Danchin, R. .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2006, 8 (03) :333-381
[8]  
de Gennes P. G., 1993, The Physics of Liquid Crystals, V2nd ed
[9]  
Denk R, 2003, MEM AM MATH SOC, V166, P1
[10]  
DING WY, 1992, J PARTIAL DIFFERENTI, V5