Growth of E. coli on formate and methanol via the reductive glycine pathway

被引:272
作者
Kim, Seohyoung [1 ]
Lindner, Steffen N. [1 ]
Aslan, Selcuk [1 ]
Yishai, Oren [1 ]
Wenk, Sebastian [1 ]
Schann, Karin [1 ]
Bar-Even, Arren [1 ]
机构
[1] Max Planck Inst Mol Plant Physiol, Potsdam, Germany
基金
欧盟地平线“2020”;
关键词
ESCHERICHIA-COLI; FORMALDEHYDE DEHYDROGENASE; CO2; EXPRESSION; METABOLISM; CONVERSION; CHEMICALS; CARBON; C-13;
D O I
10.1038/s41589-020-0473-5
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Engineering a biotechnological microorganism for growth on one-carbon intermediates, produced from the abiotic activation of CO2, is a key synthetic biology step towards the valorization of this greenhouse gas to commodity chemicals. Here we redesign the central carbon metabolism of the model bacterium Escherichia coli for growth on one-carbon compounds using the reductive glycine pathway. Sequential genomic introduction of the four metabolic modules of the synthetic pathway resulted in a strain capable of growth on formate and CO2 with a doubling time of similar to 70 h and growth yield of similar to 1.5 g cell dry weight (gCDW) per mol-formate. Short-term evolution decreased doubling time to less than 8 h and improved biomass yield to 2.3 gCDW per mol-formate. Growth on methanol and CO2 was achieved by further expression of a methanol dehydrogenase. Establishing synthetic formatotrophy and methylotrophy, as demonstrated here, paves the way for sustainable bioproduction rooted in CO2 and renewable energy. Redesigning the central carbon metabolism of Escherichia coli with the reductive glycine pathway enables growth on the one-carbon compounds formate and CO2, and the addition of methanol dehydrogenase further enables growth on methanol and CO2.
引用
收藏
页码:538 / +
页数:12
相关论文
共 60 条
[1]  
Anthony C., 1982, BIOCH METHYLOTROPHS
[2]   Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants:: the Keio collection [J].
Baba, Tomoya ;
Ara, Takeshi ;
Hasegawa, Miki ;
Takai, Yuki ;
Okumura, Yoshiko ;
Baba, Miki ;
Datsenko, Kirill A. ;
Tomita, Masaru ;
Wanner, Barry L. ;
Mori, Hirotada .
MOLECULAR SYSTEMS BIOLOGY, 2006, 2 (1) :2006.0008
[3]   Design and analysis of metabolic pathways supporting formatotrophic growth for electricity-dependent cultivation of microbes [J].
Bar-Even, Arren ;
Noor, Elad ;
Flamholz, Avi ;
Milo, Ron .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (8-9) :1039-1047
[4]   Does acetogenesis really require especially low reduction potential? [J].
Bar-Even, Arren .
BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS, 2013, 1827 (03) :395-400
[5]   Rapid and Efficient One-Step Metabolic Pathway Integration in E-coli [J].
Bassalo, Marcelo C. ;
Garst, Andrew D. ;
Halweg-Edwards, Andrea L. ;
Grau, William C. ;
Domaille, Dylan W. ;
Mutalik, Vivek K. ;
Arkin, Adam P. ;
Gill, Ryan T. .
ACS SYNTHETIC BIOLOGY, 2016, 5 (07) :561-568
[6]   Engineering the bioconversion of methane and methanol to fuels and chemicals in native and synthetic methylotrophs [J].
Bennett, R. Kyle ;
Steinberg, Lisa M. ;
Chen, Wilfred ;
Papoutsakis, Eleftherios T. .
CURRENT OPINION IN BIOTECHNOLOGY, 2018, 50 :81-93
[7]   Expression of heterologous non-oxidative pentose phosphate pathway from Bacillus methanolicus and phosphoglucose isomerase deletion improves methanol assimilation and metabolite production by a synthetic Escherichia coli methylotroph [J].
Bennett, R. Kyle ;
Gonzalez, Jacqueline E. ;
Whitaker, W. Brian ;
Antoniewicz, Maciek R. ;
Papoutsakis, Eleftherios T. .
METABOLIC ENGINEERING, 2018, 45 :75-85
[8]   Bioenergetic constraints for conversion of syngas to biofuels in acetogenic bacteria [J].
Bertsch, Johannes ;
Mueller, Volker .
BIOTECHNOLOGY FOR BIOFUELS, 2015, 8
[9]   Comparing Photosynthetic and Photovoltaic Efficiencies and Recognizing the Potential for Improvement [J].
Blankenship, Robert E. ;
Tiede, David M. ;
Barber, James ;
Brudvig, Gary W. ;
Fleming, Graham ;
Ghirardi, Maria ;
Gunner, M. R. ;
Junge, Wolfgang ;
Kramer, David M. ;
Melis, Anastasios ;
Moore, Thomas A. ;
Moser, Christopher C. ;
Nocera, Daniel G. ;
Nozik, Arthur J. ;
Ort, Donald R. ;
Parson, William W. ;
Prince, Roger C. ;
Sayre, Richard T. .
SCIENCE, 2011, 332 (6031) :805-809
[10]   Escherichia coli strains with promoter libraries constructed by Red/ET recombination pave the way for transcriptional fine-tuning [J].
Braatsch, Stephan ;
Helmark, Soren ;
Kranz, Harald ;
Koebmann, Brian ;
Jensen, Peter Ruhdal .
BIOTECHNIQUES, 2008, 45 (03) :335-337