CO2 Capture Using Monoethanolamine in a Bubble-Column Scrubber

被引:35
|
作者
Chen, Pao-Chi [1 ]
Luo, Yi Xin [1 ]
Cai, Pao Wein [1 ]
机构
[1] Lunghwa Univ Sci & Technol, Dept Chem & Mat Engn, Kueishan, Taoyuang, Taiwan
关键词
Absorption; CO2; capture; Mass transfer coefficient; Monoethanolamine; Scrubber; MASS-TRANSFER COEFFICIENT; CARBON-DIOXIDE; STRIPPER CONFIGURATIONS; AQUEOUS-SOLUTIONS; ABSORPTION; REMOVAL; KINETICS; ALKANOLAMINES; SEPARATION; MEA;
D O I
10.1002/ceat.201400240
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
A continuous bubble-column scrubber, capturing CO2 gas by monoethanolamine (MEA) solution in a pH-stat operation, is used to search for optimum process parameters by means of the Taguchi method. The process variables are the pH of the solution, gas flow rate, concentration of CO2 gas, and temperature. From the measured outlet CO2 gas concentrations, the absorption rate and overall mass transfer coefficient can be determined with the support of a steady-state material balance equation as well as a two-film model. According to the signal-to-noise ratio, the significance sequence influencing the parameters and optimum conditions can be determined. CO2 concentration and pH value proved to be decisive parameters, while temperature and gas flow rate were minor. Five sets of optimum conditions were obtained and could be further verified by empirical equations.
引用
收藏
页码:274 / 282
页数:9
相关论文
共 50 条
  • [31] Simulation of CO2 capture by aqueous solution of ammonia in shallow bubble column reactor
    Bahadori, Fatemeh
    Esmaeili, Narmin
    RENDICONTI LINCEI-SCIENZE FISICHE E NATURALI, 2017, 28 (04) : 701 - 709
  • [32] Decomposition of Nitrosamines in CO2 Capture by Aqueous Piperazine or Monoethanolamine
    Fine, Nathan A.
    Nielsen, Paul T.
    Rochelle, Gary T.
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2014, 48 (10) : 5996 - 6002
  • [33] Stripper configurations for CO2 capture by aqueous monoethanolamine and piperazine
    Van Wagener, David H.
    Rochelle, Gary T.
    10TH INTERNATIONAL CONFERENCE ON GREENHOUSE GAS CONTROL TECHNOLOGIES, 2011, 4 : 1323 - 1330
  • [34] Products and process variables in oxidation of monoethanolamine for CO2 capture
    Voice, Alexander K.
    Rochelle, Gary T.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 12 : 472 - 477
  • [35] Energy minimization in monoethanolamine-based CO2 capture using capacitive deionization
    Jande, Y. A. C.
    Asif, M.
    Shim, S. M.
    Kim, W. S.
    INTERNATIONAL JOURNAL OF ENERGY RESEARCH, 2014, 38 (12) : 1531 - 1540
  • [36] Monoethanolamine Degradation Rates in Post-combustion CO2 Capture Plants with the Capture of 100% of the Added CO2
    Mullen, Daniel
    Braakhuis, Lucas
    Knuutila, Hanna Katariina
    Gibbins, Jon
    Lucquiaud, Mathieu
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (31) : 13677 - 13691
  • [37] Monoethanolamine+2-methoxyethanol mixtures for CO2 capture: Density, viscosity and CO2 solubility
    Guo, Hui
    Hui, Li
    Shen, Shufeng
    JOURNAL OF CHEMICAL THERMODYNAMICS, 2019, 132 : 155 - 163
  • [38] CO2 capture using monoethanolamine (MEA) aqueous solution: Modeling and optimization of the solvent regeneration and CO2 desorption process
    Mores, Patricia
    Scenna, Nicolas
    Mussati, Sergio
    ENERGY, 2012, 45 (01) : 1042 - 1058
  • [39] Thermal degradation of monoethanolamine and its effect on CO2 capture capacity
    Zoannou, Kali-Stella
    Sapsford, Devin J.
    Griffiths, Anthony J.
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2013, 17 : 423 - 430
  • [40] Simulation and analysis of CO2 capture process with aqueous monoethanolamine solution
    Li, Bao-Hong
    Zhang, Nan
    Smith, Robin
    APPLIED ENERGY, 2016, 161 : 707 - 717