A causal brain network estimation method leveraging Bayesian analysis and the PC algorithm

被引:0
作者
Zhang, Gemeng [1 ]
Zhang, Aiying [1 ]
Calhoun, Vince D. [2 ,3 ,4 ]
Wang, Yu-Ping [1 ]
机构
[1] Tulane Univ, Dept Biomed Engn, New Orleans, LA 70118 USA
[2] Georgia State Univ, Triinst Ctr Translat Res Neuroimaging & Data Sci, Atlanta, GA 30030 USA
[3] Georgia Inst Technol, Atlanta, GA 30030 USA
[4] Emory Univ, Atlanta, GA 30030 USA
来源
MEDICAL IMAGING 2020: BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING | 2021年 / 11317卷
基金
美国国家卫生研究院;
关键词
Causal Inference; fMRI; Brain Connectivity; Joint Estimation; CONNECTIVITY; MODEL; FMRI;
D O I
10.1117/12.2549295
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Estimating causal brain networks from fMRI data is important in understanding functional human brain connectivity, and current causality estimation methods face various challenges such as high dimensionality and expensive computation. The joint estimation of causal networks between groups shows promising potential to investigate group-related brain connectivity variations. In this paper, we proposed a joint causal brain network estimation method by adding a prior to the popular PC algorithm(1) (by Peter Spirtes and Clark Glymour). The prior is obtained through a fast joint Bayesian analysis (FIBA) and plays a role as a screening step, significantly reducing computational burden of PC algorithm. Moreover, the FIBA also enables us to efficiently address the high dimensionality problem of fMRI data. The experimental results from both simulation data sets and real fMRI data demonstrate the accuracy and efficiency of the proposed method. The specific brain connections identified in schizophrenia patients extend previous research and shed light on other studies of mental disorders.
引用
收藏
页数:6
相关论文
共 18 条
[1]   Resting-state fMRI mapping of cerebellar functional dysconnections involving multiple large-scale networks in patients with schizophrenia [J].
Chen, Yen-Ling ;
Tu, Pei-Chi ;
Lee, Ying-Chiao ;
Chen, Ying-Shiue ;
Li, Cheng-Ta ;
Su, Tung-Ping .
SCHIZOPHRENIA RESEARCH, 2013, 149 (1-3) :26-34
[2]   Learning equivalence classes of Bayesian-network structures [J].
Chickering, DM .
JOURNAL OF MACHINE LEARNING RESEARCH, 2002, 2 (03) :445-498
[3]   Dynamic connectivity and the effects of maturation in youth with attention deficit hyperactivity disorder [J].
de Lacy, Nina ;
Calhoun, Vince D. .
NETWORK NEUROSCIENCE, 2018, 3 (01) :195-216
[4]   The MCIC Collection: A Shared Repository of Multi-Modal, Multi-Site Brain Image Data from a Clinical Investigation of Schizophrenia [J].
Gollub, Randy L. ;
Shoemaker, Jody M. ;
King, Margaret D. ;
White, Tonya ;
Ehrlich, Stefan ;
Sponheim, Scott R. ;
Clark, Vincent P. ;
Turner, Jessica A. ;
Mueller, Bryon A. ;
Magnotta, Vince ;
O'Leary, Daniel ;
Ho, Beng C. ;
Brauns, Stefan ;
Manoach, Dara S. ;
Seidman, Larry ;
Bustillo, Juan R. ;
Lauriello, John ;
Bockholt, Jeremy ;
Lim, Kelvin O. ;
Rosen, Bruce R. ;
Schulz, S. Charles ;
Calhoun, Vince D. ;
Andreasen, Nancy C. .
NEUROINFORMATICS, 2013, 11 (03) :367-388
[5]   Inferring functional connectivity in MRI using Bayesian network structure learning with a modified PC algorithm [J].
Iyer, Swathi P. ;
Shafran, Izhak ;
Grayson, David ;
Gates, Kathleen ;
Nigg, Joel T. ;
Fair, Damien A. .
NEUROIMAGE, 2013, 75 :165-175
[6]  
Jia B., 2017, FAST BAYESIAN INTEGR
[7]  
Kalisch M, 2007, J MACH LEARN RES, V8, P613
[8]   Disintegration of Sensorimotor Brain Networks in Schizophrenia [J].
Kaufmann, Tobias ;
Skatun, Kristina C. ;
Alnaes, Dag ;
Nhat Trung Doan ;
Duff, Eugene P. ;
Tonnesen, Siren ;
Roussos, Evangelos ;
Ueland, Torill ;
Aminoff, Sofie R. ;
Lagerberg, Trine V. ;
Agartz, Ingrid ;
Melle, Ingrid S. ;
Smith, Stephen M. ;
Andreassen, Ole A. ;
Westlye, Lars T. .
SCHIZOPHRENIA BULLETIN, 2015, 41 (06) :1326-1335
[9]   Effects of morphine and alcohol on functional brain connectivity during "resting state": A placebo-controlled crossover study in healthy young men [J].
Khalili-Mahani, Najmeh ;
Zoethout, Remco M. W. ;
Beckmann, Christian F. ;
Baerends, Evelinda ;
de Kam, Marieke L. ;
Soeter, Roelof P. ;
Dahan, Albert ;
van Buchem, Mark A. ;
van Gerven, Joop M. A. ;
Rombouts, Serge A. R. B. .
HUMAN BRAIN MAPPING, 2012, 33 (05) :1003-1018
[10]   Correspondence between fMRI and SNP data by group sparse canonical correlation analysis [J].
Lin, Dongdong ;
Calhoun, Vince D. ;
Wang, Yu-Ping .
MEDICAL IMAGE ANALYSIS, 2014, 18 (06) :891-902