Deep Neural Network for Accurate and Efficient Atomistic Modeling of Phase Change Memory

被引:17
作者
Shi, Mengchao [1 ]
Mo, Pinghui [1 ]
Liu, Jie [1 ]
机构
[1] Hunan Univ, Coll Elect & Informat Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Phase change memory; artificial neural network; chalcogenide; amorphization; crystallization; nucleation; growth; FAST CRYSTALLIZATION; DYNAMICS; TEMPERATURE; ORDER;
D O I
10.1109/LED.2020.2964779
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This letter presents a general-purpose fully-atomistic method to simulate phase change memory (PCM), by combining density functional theory (DFT) and deep neural network (DNN). Its maximum calculation error of atomic forces is about 10(-1) eV/angstrom, which is 1-2 orders of magnitude more accurate than state-of-art artificial neural network (ANN) in PCM literature (over 10(1) eV/angstrom). Its simulation time, t(s), scales linearlywith the number of atoms n(a) (t(s) proportional to n(a)), which is more efficient than DFT (t(s) proportional to n(a)(3)) widely used to model PCM, leading to approximately 2, 4, 6 orders of magnitude reduction of modeling time when n(a) approximate to 10(1), 10(2), 10(3), for instance. Its efficiency and accuracy may be useful to develop next-generation atomistic modeling tools to enable in-depth optimization of PCM.
引用
收藏
页码:365 / 368
页数:4
相关论文
共 30 条
[1]  
Allen M.P., 2017, COMPUTER SIMULATION
[2]  
[Anonymous], [No title captured], DOI [10.1007/978-1-4614-0481-1, DOI 10.1007/978-1-4614-0481-1]
[3]   Priming effects in the crystallization of the phase change compound GeTe from atomistic simulations [J].
Gabardi, Silvia ;
Sosso, Gabriele G. ;
Behler, Joerg ;
Bernasconi, Marco .
FARADAY DISCUSSIONS, 2019, 213 :287-301
[4]   Effect of carbon doping on the structure of amorphous GeTe phase change material [J].
Ghezzi, G. E. ;
Raty, J. Y. ;
Maitrejean, S. ;
Roule, A. ;
Elkaim, E. ;
Hippert, F. .
APPLIED PHYSICS LETTERS, 2011, 99 (15)
[5]   Microscopic origin of the fast crystallization ability of Ge-Sb-Te phase-change memory materials [J].
Hegedus, J. ;
Elliott, S. R. .
NATURE MATERIALS, 2008, 7 (05) :399-405
[6]   CANONICAL DYNAMICS - EQUILIBRIUM PHASE-SPACE DISTRIBUTIONS [J].
HOOVER, WG .
PHYSICAL REVIEW A, 1985, 31 (03) :1695-1697
[7]   MULTILAYER FEEDFORWARD NETWORKS ARE UNIVERSAL APPROXIMATORS [J].
HORNIK, K ;
STINCHCOMBE, M ;
WHITE, H .
NEURAL NETWORKS, 1989, 2 (05) :359-366
[8]   Analysis of temperature in phase change memory scaling [J].
Kim, SangBum ;
Philip, H.-S. .
IEEE ELECTRON DEVICE LETTERS, 2007, 28 (08) :697-699
[9]   Phonon and electron transport through Ge2Sb2Te5 films and interfaces bounded by metals [J].
Lee, Jaeho ;
Bozorg-Grayeli, Elah ;
Kim, SangBum ;
Asheghi, Mehdi ;
Wong, H. -S. Philip ;
Goodson, Kenneth E. .
APPLIED PHYSICS LETTERS, 2013, 102 (19)
[10]   A multi-scale analysis of the crystallization of amorphous germanium telluride using ab initio simulations and classical crystallization theory [J].
Liu, Jie ;
Xu, Xu ;
Brush, Lucien ;
Anantram, M. P. .
JOURNAL OF APPLIED PHYSICS, 2014, 115 (02)