A note on the existence of sequences with small star discrepancy

被引:8
作者
Dick, Josef [1 ]
机构
[1] UNSW Asia, Singapore 248922, Singapore
基金
澳大利亚研究理事会;
关键词
star discrepancy; tractability; sequence;
D O I
10.1016/j.jco.2007.01.004
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
It was shown by Heinrich et al. [The inverse of the star-discrepancy depends linearly on the dimension, Acta Arith. 96 (2001) 279-302] that there exist point sets for which the inverse of the star discrepancy depends linearly on the dimension. In this paper we extend those results by showing that there exist point sets extensible in the modulus and the dimension for which the star discrepancy satisfies a tractability bound for all dimensions and moduli. (c) 2007 Elsevier Inc. All rights reserved.
引用
收藏
页码:649 / 652
页数:4
相关论文
共 9 条
[1]   Bounds and constructions for the star-discrepancy via δ-covers [J].
Doerr, B ;
Gnewuch, M ;
Srivastav, A .
JOURNAL OF COMPLEXITY, 2005, 21 (05) :691-709
[2]   Some open problems concerning the star-discrepancy [J].
Heinrich, S .
JOURNAL OF COMPLEXITY, 2003, 19 (03) :416-419
[3]   The inverse of the star-discrepancy depends linearly on the dimension [J].
Heinrich, S ;
Novak, E ;
Wasilkowski, GW ;
Wozniakowski, H .
ACTA ARITHMETICA, 2001, 96 (03) :279-302
[4]   The existence of good extensible rank-1 lattices [J].
Hickernell, FJ ;
Niederreiter, H .
JOURNAL OF COMPLEXITY, 2003, 19 (03) :286-300
[5]  
Hinrichs A, 2004, J COMPLEXITY, V20, P477, DOI 10.1016/j Jco.2004.01.001
[6]  
Hlawka E., 1961, ANN MAT PUR APPL, P325, DOI DOI 10.1007/BF02415361
[7]   Constructions of (t, m, s)-nets and (t, s)-sequences [J].
Niederreiter, H .
FINITE FIELDS AND THEIR APPLICATIONS, 2005, 11 (03) :578-600
[8]   The existence of good extensible polynomial lattice rules [J].
Niederreiter, H .
MONATSHEFTE FUR MATHEMATIK, 2003, 139 (04) :295-307
[9]  
Niederreiter H., 1992, CBMS NSF REGIONAL C, V63