On the First Critical Field in Ginzburg-Landau Theory for Thin Shells and Manifolds

被引:11
作者
Contreras, Andres [1 ]
机构
[1] Indiana Univ, Dept Math, Bloomington, IN 47405 USA
关键词
CRITICAL MAGNETIC-FIELD; LOCAL MINIMIZERS; VORTICES; EQUATION; ENERGY; MODEL;
D O I
10.1007/s00205-010-0352-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we investigate the response of a thin superconducting shell to an arbitrary external magnetic field. We identify the intensity of the applied field that forces the emergence of vortices in minimizers, the so-called first critical field H (c1) in Ginzburg-Landau theory, for closed simply connected manifolds and arbitrary fields. In the case of a simply connected surface of revolution and vertical and constant field, we further determine the exact number of vortices in the sample as the intensity of the applied field is raised just above H (c1). Finally, we derive via I"-convergence similar statements for three-dimensional domains of small thickness, where in this setting point vortices are replaced by vortex lines.
引用
收藏
页码:563 / 611
页数:49
相关论文
共 27 条
[11]  
Du Q, 2005, MATH COMPUT, V74, P1257, DOI 10.1090/S0025-5718-04-01719-3
[12]   Numerical simulations of the quantized vortices on a thin superconducting hollow sphere [J].
Du, Q ;
Ju, L .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 201 (02) :511-530
[13]  
Gilbarg D., 1977, Grundlehren der Mathematischen Wissenschaften, V224
[14]  
HERVE RM, 1994, ANN I H POINCARE-AN, V11, P427
[15]   Local minimizers of the Ginzburg-Landau energy with magnetic field in three dimensions [J].
Jerrard, R ;
Montero, A ;
Sternberg, P .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2004, 249 (03) :549-577
[16]   Lower bounds for generalized Ginzburg-Landau functionals [J].
Jerrard, RL .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1999, 30 (04) :721-746
[17]  
JERRARD RL, J EURO MATH IN PRESS
[18]   LOCAL MINIMIZERS AND SINGULAR PERTURBATIONS [J].
KOHN, RV ;
STERNBERG, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1989, 111 :69-84
[19]  
Mironescu P, 1996, CR ACAD SCI I-MATH, V323, P593
[20]   MONTE-CARLO SEARCH FOR THE FLUX-LATTICE-MELTING TRANSITION IN 2-DIMENSIONAL SUPERCONDUCTORS [J].
ONEILL, JA ;
MOORE, MA .
PHYSICAL REVIEW LETTERS, 1992, 69 (17) :2582-2585