Room-temperature blue brittleness of Fe-Mn-C austenitic steels

被引:39
作者
Koyama, Motomichi [1 ]
Shimomura, Yusaku [1 ]
Chiba, Aya [2 ]
Akiyama, Eiji [3 ]
Tsuzaki, Kaneaki [1 ]
机构
[1] Kyushu Univ, Dept Mech Engn, Nishi Ku, Motooka 744, Fukuoka, Fukuoka 8190395, Japan
[2] Natl Inst Mat Sci, Sengen 1-2-1, Tsukuba, Ibaraki 3050047, Japan
[3] Tohoku Univ, Inst Mat Res, Aoba Ku, Katahira 2-1-1, Sendai, Miyagi 9808577, Japan
关键词
Dynamic strain aging; Blue brittleness; Austenitic steel; Deformation twinning; Ductile fracture; INDUCED PLASTICITY STEELS; STACKING-FAULT ENERGY; HADFIELD MANGANESE STEEL; DEFORMATION; CARBON; MECHANISMS; BEHAVIOR; FRACTURE; EVOLUTION; GRAIN;
D O I
10.1016/j.scriptamat.2017.07.017
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Fe-33Mn-xC (x = 0,03,0.6,0.8, and 1.1 mass%) fully austenitic steels showed ductility degradation owing to dynamic strain aging (DSA). The elongation increased with increasing carbon concentration at a strain rate of 10(-2) s(-1). However, in the steels with carbon contents of 0.6%, 0.8%, and 1.1%, the elongation decreased with increasing carbon concentration at a strain rate of 10(-5) s(-1) where the DAS effect is distinct. Although all specimens showed ductile fracture with the formation of dimples, the work hardening-true stress relation of the Fe-33Mn-1.1C steel demonstrated fracture before satisfying Considere's criterion even at high strain rates. (C) 2017 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:20 / 23
页数:4
相关论文
共 23 条
[1]  
Abbaschian R., 2008, Physical Metallurgy Principles, V4th
[2]   First-principles investigation of the effect of carbon on the stacking fault energy of Fe-C alloys [J].
Abbasi, Afshin ;
Dick, Alexey ;
Hickel, Tilmann ;
Neugebauer, Joerg .
ACTA MATERIALIA, 2011, 59 (08) :3041-3048
[3]   STRAIN-HARDENING OF HADFIELD MANGANESE STEEL [J].
ADLER, PH ;
OLSON, GB ;
OWEN, WS .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1986, 17 (10) :1725-1737
[4]   Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels [J].
Bouaziz, O. ;
Allain, S. ;
Scott, C. .
SCRIPTA MATERIALIA, 2008, 58 (06) :484-487
[5]   EFFECT OF DYNAMIC STRAIN-AGEING ON DUCTILE FRACTURE PROCESS IN MILD STEEL [J].
BRINDLEY, BJ .
ACTA METALLURGICA, 1970, 18 (03) :325-&
[6]   EFFECT OF CARBON ON STACKING-FAULT ENERGY OF AUSTENITIC STAINLESS-STEELS [J].
BROFMAN, PJ ;
ANSELL, GS .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1978, 9 (06) :879-880
[7]   Localized deformation due to Portevin-LeChatelier effect in 18Mn-0.6C TWIP austenitic steel [J].
Chen, Lei ;
Kim, Han-Soo ;
Kim, Sung-Kyu ;
De Cooman, B. C. .
ISIJ INTERNATIONAL, 2007, 47 (12) :1804-1812
[8]   MECHANISM OF WORK-HARDENING IN HADFIELD MANGANESE STEEL [J].
DASTUR, YN ;
LESLIE, WC .
METALLURGICAL TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 1981, 12 (05) :749-759
[9]   Failure mechanisms in DP600 steel: Initiation, evolution and fracture [J].
Ghadbeigi, H. ;
Pinna, C. ;
Celotto, S. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2013, 588 :420-431
[10]   Microstructural evolution and mechanical behaviour of Fe-30Mn-C steels with various carbon contents [J].
Ghasri-Khouzani, M. ;
McDermid, J. R. .
MATERIALS SCIENCE AND TECHNOLOGY, 2017, 33 (10) :1159-1170