Barrier Solutions of Elliptic Differential Equations in Musielak-Orlicz-Sobolev Spaces

被引:4
作者
Dong, Ge [1 ]
Fang, Xiaochun [2 ,3 ]
机构
[1] Shanghai Univ Med & Hlth Sci, Dept Arts & Sci Teaching, Shanghai 201318, Peoples R China
[2] Tongji Univ, Dept Math, Shanghai 200092, Peoples R China
[3] North Caucasus Ctr Math Res, Vladikavkaz 362025, Russia
基金
中国国家自然科学基金;
关键词
VARIATIONAL-INEQUALITIES; APPROXIMATION PROPERTIES; EXISTENCE THEOREM; WEAK SOLUTIONS; OPERATORS; SYSTEMS;
D O I
10.1155/2021/9927898
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the solution set of the following Dirichlet boundary equation: -div (a(1)(x, u, Du)) + a(0)(x, u) = f (x, u, Du) in Musielak-Orlicz-Sobolev spaces, where a(1) : Omega x R x R-N -> R-N, a(0) : Omega x R -> R, and f : Omega x R x R-N -> R are all Caratheodory functions. Both a(1) and f depend on the solution u and its gradient Du. By using a linear functional analysis method, we provide sufficient conditions which ensure that the solution set of the equation is nonempty, and it possesses a greatest element and a smallest element with respect to the ordering "<=," which are called barrier solutions.
引用
收藏
页数:10
相关论文
共 29 条
[1]  
[Anonymous], 1986, GEOMETRY THEORY ORLI
[2]   Generalized Concentration-Compactness Principles for Variable Exponent Lebesgue Spaces with Asymptotic Analysis of Low Energy Extremals [J].
Bashir, Zia ;
Garcia Guirao, Juan Luis ;
Siddique, Adil ;
Saeed, Tareq .
MATHEMATICS, 2020, 8 (10) :1-15
[3]   Variational inequalities in Musielak-Orlicz-Sobolev spaces [J].
Benkirane, A. ;
El Vally, M. Sidi .
BULLETIN OF THE BELGIAN MATHEMATICAL SOCIETY-SIMON STEVIN, 2014, 21 (05) :787-811
[4]  
Benkirane A, 2012, THAI J MATH, V10, P371
[5]   Barrier solutions of elliptic variational inequalities [J].
Carl, Siegfried .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 26 :75-92
[6]   Elliptic inequalities with multi-valued operators: Existence, comparison and related variational-hemivariational type inequalities [J].
Carl, Siegfried ;
Le, Vy Khoi .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2015, 121 :130-152
[7]  
Carl S, 2007, SPRINGER MONOGR MATH, P1
[8]   Periodic solutions for a differential inclusion problem involving the p(t)-Laplacian [J].
Chen, Peng ;
Tang, Xianhua .
ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) :799-815
[9]   On the minimal solution for some variational inequalities [J].
Chipot, Michel ;
Guesmia, Senoussi ;
Harkat, Soumia .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2019, 266 (01) :493-525
[10]   Removable sets in elliptic equations with Musielak-Orlicz growth [J].
Chlebicka, Iwona ;
Karppinen, Arttu .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2021, 501 (01)