Homeostatic Control of Presynaptic Neurotransmitter Release

被引:189
作者
Davis, Graeme W. [1 ]
Mueller, Martin [2 ]
机构
[1] Univ Calif San Francisco, Dept Biochem & Biophys, San Francisco, CA 94158 USA
[2] Univ Zurich, Inst Mol Life Sci, CH-8057 Zurich, Switzerland
来源
ANNUAL REVIEW OF PHYSIOLOGY, VOL 77 | 2015年 / 77卷
关键词
neuromuscular junction; autism; homeostatic plasticity; myasthenia gravis; epilepsy; synapse; CHANNEL ALPHA-1 SUBUNIT; SYNAPTIC HOMEOSTASIS; TRANSMITTER RELEASE; GLUTAMATE RECEPTORS; RETROGRADE CONTROL; MYASTHENIA-GRAVIS; GENETIC-ANALYSIS; FUNCTION DRIVEN; ACTIVE ZONE; PLASTICITY;
D O I
10.1146/annurev-physiol-021014-071740
中图分类号
Q4 [生理学];
学科分类号
071003 ;
摘要
It is well established that the active properties of nerve and muscle cells are stabilized by homeostatic signaling systems. In organisms ranging from Drosophila to humans, neurons restore baseline function in the continued presence of destabilizing perturbations by rebalancing ion channel expression, modifying neurotransmitter receptor surface expression and trafficking, and modulating neurotransmitter release. This review focuses on the homeostatic modulation of presynaptic neurotransmitter release, termed presynaptic homeostasis. First, we highlight criteria that can be used to define a process as being under homeostatic control. Next, we review the remarkable conservation of presynaptic homeostasis at the Drosophila, mouse, and human neuromuscular junctions and emerging parallels at synaptic connections in the mammalian central nervous system. We then highlight recent progress identifying cellular and molecular mechanisms. We conclude by reviewing emerging parallels between the mechanisms of homeostatic signaling and genetic links to neurological disease.
引用
收藏
页码:251 / 270
页数:20
相关论文
共 112 条
[1]   wishful thinking encodes a BMP type II receptor that regulates synaptic growth in Drosophila [J].
Aberle, H ;
Haghighi, AP ;
Fetter, RD ;
McCabe, BD ;
Magalhaes, TR ;
Goodman, CS .
NEURON, 2002, 33 (04) :545-558
[2]   Modulation of transmitter release by presynaptic resting potential and background calcium levels [J].
Awatramani, GB ;
Price, GD ;
Trussell, LO .
NEURON, 2005, 48 (01) :109-121
[3]   Chronic blockade of glutamate receptors enhances presynaptic release and downregulates the interaction between synaptophysin-synaptobrevin-vesicle-associated membrane protein 2 [J].
Bacci, A ;
Coco, S ;
Pravettoni, E ;
Schenk, U ;
Armano, S ;
Frassoni, C ;
Verderio, C ;
De Camilli, P ;
Matteoli, M .
JOURNAL OF NEUROSCIENCE, 2001, 21 (17) :6588-6596
[4]   Differential activity-dependent, homeostatic plasticity of two neocortical inhibitory circuits [J].
Bartley, Aundrea F. ;
Huang, Z. Josh ;
Huber, Kimberly M. ;
Gibson, Jay R. .
JOURNAL OF NEUROPHYSIOLOGY, 2008, 100 (04) :1983-1994
[5]   Excitatory/Inhibitory Synaptic Imbalance Leads to Hippocampal Hyperexcitability in Mouse Models of Tuberous Sclerosis [J].
Bateup, Helen S. ;
Johnson, Caroline A. ;
Denefrio, Cassandra L. ;
Saulnier, Jessica L. ;
Kornacker, Karl ;
Sabatini, Bernardo L. .
NEURON, 2013, 78 (03) :510-522
[6]   Heteromultimers of DEG/ENaC subunits form H+-gated channels in mouse sensory neurons [J].
Benson, CJ ;
Xie, JH ;
Wemmie, JA ;
Price, MP ;
Henss, JM ;
Welsh, MJ ;
Snyder, PM .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2002, 99 (04) :2338-2343
[7]   A Hierarchy of Cell Intrinsic and Target-Derived Homeostatic Signaling [J].
Bergquist, Sharon ;
Dickman, Dion K. ;
Davis, Graeme W. .
NEURON, 2010, 66 (02) :220-234
[8]   Protons at the gate: DEG/ENaC ion channels help us feel and remember [J].
Bianchi, L ;
Driscoll, M .
NEURON, 2002, 34 (03) :337-340
[9]   Calcium sensitivity of glutamate release in a calyx-type terminal [J].
Bollmann, JH ;
Sakmann, B ;
Gerard, J ;
Borst, G .
SCIENCE, 2000, 289 (5481) :953-957
[10]   A synaptic trek to autism [J].
Bourgeron, Thomas .
CURRENT OPINION IN NEUROBIOLOGY, 2009, 19 (02) :231-234