Modeling the effect of sensor failure on the location of counting sensors for origin-destination (OD) estimation

被引:35
作者
Salari, Mostafa [1 ]
Kattan, Lina [1 ]
Lam, William H. K. [2 ]
Esfeh, Mohammad Ansari [1 ]
Fu, Hao [2 ]
机构
[1] Univ Calgary, Schulich Sch Engn, Dept Civil & Environm Engn, Calgary, AB, Canada
[2] Hong Kong Polytech Univ, Dept Civil & Environm Engn, Kowloon, Hung Hom, Hong Kong, Peoples R China
基金
加拿大自然科学与工程研究理事会;
关键词
Keyword; Network sensor location problem; Origin-Destination estimation; Sensor failure; Nonhomogeneous Poisson process; Genetic algorithm; OD demand information loss; OD demand reliability; LINK FLOW OBSERVABILITY; TRAFFIC NETWORK; MATRIX; OPTIMIZATION; ALGORITHM; IDENTIFICATION; CALIBRATION; URBAN; SCALE;
D O I
10.1016/j.trc.2021.103367
中图分类号
U [交通运输];
学科分类号
08 ; 0823 ;
摘要
The network sensor location problem (NSLP) for origin-destination (OD) estimation identifies the optimal locations for sensors to estimate the vehicular flow of OD pairs in a road network. Like other measurement apparatuses, these sensors are subject to failure, which can affect the reliability of the OD estimations. In this paper, we propose a novel model that allows us to solve the NSLP for OD demand estimation by identifying the most reliable locations to install sets of sensors with consideration for a nonhomogeneous Poisson process to account for time-dependent sensor failure. The proposed model does not rely on the assumption that true OD demand information is known. We introduce two separate objective functions to minimize the maximum possible information loss (MPIL) associated with OD demand on sensor-equipped links and OD pairs during the lifetimes of the sensors. Both objective functions are formulated to incorporate the possibility of sensor failure into the calculated OD demands. We use stochastic user equilibrium (SUE) to address the stochasticity of traffic route selection. We then employ the weighted sums method (WSM) and an epsilon-constraint to incorporate the objective functions into an integrated formulation. Two sensor types with different time-dependent failure rates are considered to identify the optimal locations for sets of sensors for OD demand estimation purposes while addressing the available budget constraints. We also address the problem of scheduled/routine maintenance of existing sensors by introducing an additional sensor deployment phase that focuses on maintaining the reliability of information by repairing or replacing failed sensors, installing additional sensors or a combination of both. The numerical results from the proposed model demonstrate how the deployment of more advanced sensors with lower failure rates can effectively improve the reliability of the information obtained from sensors. We also evaluate the use of different weights for the WSM's objective functions to explore alternative combinations of sensor configurations. The introduction of additional sensors to a network shows that the decision between repairing failed sensors and installing new sensors is highly dependent on the available budget and the failed sensors' locations.
引用
收藏
页数:32
相关论文
共 62 条
[1]   HOW TO IDENTIFY A BATHTUB HAZARD RATE [J].
AARSET, MV .
IEEE TRANSACTIONS ON RELIABILITY, 1987, 36 (01) :106-108
[2]  
[Anonymous], 1984, URBAN TRANSPORTATION
[3]   Inferring dynamic origin-destination flows by transport mode using mobile phone data [J].
Bachir, Danya ;
Khodabandelou, Ghazaleh ;
Gauthier, Vincent ;
El Yacoubi, Mounim ;
Puchinger, Jakob .
TRANSPORTATION RESEARCH PART C-EMERGING TECHNOLOGIES, 2019, 101 :254-275
[4]  
Balakrishna R., 2019, Transport Simulation, P201
[5]   THE ESTIMATION OF ORIGIN-DESTINATION MATRICES BY CONSTRAINED GENERALIZED LEAST-SQUARES [J].
BELL, MGH .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 1991, 25 (01) :13-22
[6]   Combinatorial aspects of the Sensor Location Problem [J].
Bianco, Lucio ;
Confessore, Giuseppe ;
Gentili, Monica .
ANNALS OF OPERATIONS RESEARCH, 2006, 144 (01) :201-234
[7]   A network based model for traffic sensor location with implications on O/D matrix estimates [J].
Bianco, T ;
Confessore, G ;
Reverberi, P .
TRANSPORTATION SCIENCE, 2001, 35 (01) :50-60
[8]   The total demand scale: a new measure of quality for static and dynamic origin-destination trip tables [J].
Bierlaire, M .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2002, 36 (09) :837-850
[9]   A BIG DATA DEMAND ESTIMATION MODEL FOR URBAN CONGESTED NETWORKS [J].
Cantelmo, Guido ;
Viti, Francesco .
TRANSPORT AND TELECOMMUNICATION JOURNAL, 2020, 21 (04) :245-254
[10]   A utility-based dynamic demand estimation model that explicitly accounts for activity scheduling and duration [J].
Cantelmo, Guido ;
Viti, Francesco ;
Cipriani, Ernesto ;
Nigro, Marialisa .
TRANSPORTATION RESEARCH PART A-POLICY AND PRACTICE, 2018, 114 :303-320