Stability of stochastically perturbed Hopfield-type neural networks with mixed delays

被引:0
作者
Jendoubi, Chiraz [1 ]
Cherif, Farouk [2 ]
机构
[1] Univ Sfax, Sfax Fac Sci, Sfax, Tunisia
[2] Univ Sousse, ISSATS, Sousse, Tunisia
来源
2014 6TH INTERNATIONAL CONFERENCE OF SOFT COMPUTING AND PATTERN RECOGNITION (SOCPAR) | 2014年
关键词
Neural networks; quadratic mean almost periodic; global stability; Ito's isometry; mixed delays; TIME-VARYING DELAYS; EXPONENTIAL STABILITY; NONLINEAR-SYSTEMS;
D O I
暂无
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
This paper gives some new and slacker conditions about stability of the square mean pseudo almost periodic solutions of the stochastic Hopfield-type neural networks with mixed delays dx (t) = [- Dx(t) + Af(x(t)) + Bg (x(tau)(t)) + integral(t)(t-rho) K(t - s) h (x (s)) ds] dt + sigma(x (t)) d omega (t) x (t) = xi(t), -tau <= t <= 0.
引用
收藏
页码:465 / 470
页数:6
相关论文
共 21 条
[1]  
Amir B., 1999, Ann. Math. Blaise Pascal, V6, P1
[2]  
Ammar B., 2012, IEEE T NEURAL NETWOR, V23
[3]   Authors' reply to "Comments on 'Finite-time stability theorem of stochastic nonlinear systems [Automatica 46 (2010) 2105-2108]'" [J].
Chen, Weisheng ;
Jiao, L. C. .
AUTOMATICA, 2011, 47 (07) :1544-1545
[4]  
Cherif F., 2011, INTERNATIONALMATHEMA, V6, P953
[5]   Quadratic-mean pseudo almost periodic solutions to some stochastic differential equations in a Hilbert space [J].
Chérif, Farouk .
Journal of Applied Mathematics and Computing, 2012, 40 (1-2) :427-443
[6]  
Friedman Avner., 1976, Stochastic differential equations and applications
[7]   SQUARE-MEAN ALMOST AUTOMORPHIC SOLUTIONS FOR SOME STOCHASTIC DIFFERENTIAL EQUATIONS [J].
Fu, Miaomiao ;
Liu, Zhenxin .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2010, 138 (10) :3689-3701
[8]   DELAY-INDEPENDENT STABILITY IN BIDIRECTIONAL ASSOCIATIVE MEMORY NETWORKS [J].
GOPALSAMY, K ;
HE, XZ .
IEEE TRANSACTIONS ON NEURAL NETWORKS, 1994, 5 (06) :998-1002
[9]   STABILITY IN ASYMMETRIC HOPFIELD NETS WITH TRANSMISSION DELAYS [J].
GOPALSAMY, K ;
HE, XZ .
PHYSICA D-NONLINEAR PHENOMENA, 1994, 76 (04) :344-358
[10]  
Hale J.K., 1977, THEORY FUNCTIONAL DI