Negative terahertz conductivity in disordered graphene bilayers with population inversion

被引:15
作者
Svintsov, D. [1 ]
Otsuji, T. [2 ]
Mitin, V. [2 ,3 ]
Shur, M. S. [4 ,5 ]
Ryzhii, V. [2 ]
机构
[1] Moscow Inst Phys & Technol, Lab Nanoopt & Plasmon, Dolgoprudnyi 141700, Russia
[2] Tohoku Univ, Elect Commun Res Inst, Sendai, Miyagi 9808577, Japan
[3] SUNY Buffalo, Dept Elect Engn, Buffalo, NY USA
[4] Rensselaer Polytech Inst, Dept Elect Elect & Syst Engn, Troy, NY 12180 USA
[5] Rensselaer Polytech Inst, Dept Phys Appl Phys & Astron, Troy, NY 12180 USA
关键词
PHOTONICS; LASER; GAIN;
D O I
10.1063/1.4915314
中图分类号
O59 [应用物理学];
学科分类号
摘要
The gapless energy band spectra make the structures based on graphene and graphene bilayer with the population inversion to be promising media for the interband terahertz (THz) lasing. However, a strong intraband absorption at THz frequencies still poses a challenge for efficient THz lasing. In this paper, we show that in the pumped graphene bilayer, the indirect interband radiative transitions accompanied by scattering of carriers by disorder can provide a substantial negative contribution to the THz conductivity (together with the direct interband transitions). In the graphene bilayer on high-j substrates with point charged defects, these transitions substantially compensate the losses due to the intraband (Drude) absorption. We also demonstrate that the indirect interband contribution to the THz conductivity in a graphene bilayer with the extended defects (such as the charged impurity clusters) can surpass by several times the fundamental limit associated with the direct interband transitions, and the Drude conductivity as well. These predictions can affect the strategy of the graphene-based THz laser implementation. (C) 2015 AIP Publishing LLC.
引用
收藏
页数:5
相关论文
共 36 条
[1]   Crossover from quantum to Boltzmann transport in graphene [J].
Adam, Shaffique ;
Brouwer, Piet W. ;
Das Sarma, S. .
PHYSICAL REVIEW B, 2009, 79 (20)
[2]   Terahertz laser based on optically pumped graphene: Model and feasibility of realization [J].
Aleshkin, V. Ya. ;
Dubinov, A. A. ;
Ryzhii, V. .
JETP LETTERS, 2009, 89 (02) :63-67
[3]   Graphene Photonics, Plasmonics, and Broadband Optoelectronic Devices [J].
Bao, Qiaoliang ;
Loh, Kian Ping .
ACS NANO, 2012, 6 (05) :3677-3694
[4]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[5]   Ultrafast carrier dynamics and terahertz emission in optically pumped graphene at room temperature [J].
Boubanga-Tombet, S. ;
Chan, S. ;
Watanabe, T. ;
Satou, A. ;
Ryzhii, V. ;
Otsuji, T. .
PHYSICAL REVIEW B, 2012, 85 (03)
[6]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[7]   Charged-impurity scattering in graphene [J].
Chen, J. -H. ;
Jang, C. ;
Adam, S. ;
Fuhrer, M. S. ;
Williams, E. D. ;
Ishigami, M. .
NATURE PHYSICS, 2008, 4 (05) :377-381
[8]   Graphene bilayer with a twist: Electronic structure [J].
dos Santos, J. M. B. Lopes ;
Peres, N. M. R. ;
Castro Neto, A. H. .
PHYSICAL REVIEW LETTERS, 2007, 99 (25)
[9]  
Gierz I., ARXIV14090211
[10]  
Gierz I, 2013, NAT MATER, V12, P1119, DOI [10.1038/NMAT3757, 10.1038/nmat3757]