Fractional electromagnetic waves in conducting media

被引:5
|
作者
Gomez-Aguilar, J. F. [1 ]
Yepez-Martinez, H. [2 ]
Calderon-Ramon, C. [3 ]
Benavidez-Cruz, M. [3 ]
Morales-Mendoza, L. J. [3 ]
机构
[1] Tecnol Nacl Mexico, Catedrat CONACYT Ctr Nacl Invest & Desarrollo Tec, Interior Internado Palmira S-N, Cuernavaca 62490, Morelos, Mexico
[2] Univ Autonoma Ciudad Mexico, Colegio Ciencia & Tecnol San Lorenzo Tezonco, Prolongac San Isidro 151,POB 09790, Mexico City, DF, Mexico
[3] Univ Veracruzana, Fac Ingn Elect & Comunicac, Campus Poza Rica Tuxpan, Poza Rica Veracruz 93390, Mexico
关键词
fractional wave equation; Caputo derivative; Mittag-Leffler function; anomalous behavior; fractional space-time components; DISSIPATIVE SYSTEMS; DIELECTRIC MEDIA; CALCULUS; EQUATIONS; PROPAGATION; MECHANICS; FRACTALS; GUIDE; SPACE; LINE;
D O I
10.1080/09205071.2015.1105761
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
We present the fractional wave equation in a conducting material. We used a Maxwell's equations with the assumptions that the charge density rho and current density J were zero, and that the permeability mu and permittivity epsilon were constants. The fractional wave equation will be examined separately; with fractional spatial derivative and fractional temporal derivative, finally, consider a Dirichlet conditions, the Fourier method was used to find the full solution of the fractional equation in analytic way. Two auxiliary parameters sigma(x) and sigma(t) are introduced; these parameters characterize consistently the existence of the fractional space-time derivatives into the fractional wave equation. A physical relation between these parameters is reported. The fractional derivative of Caputo type is considered and the corresponding solutions are given in terms of the Mittag-Leffler function show fractal space-time geometry different from the classical integer-order model.
引用
收藏
页码:259 / 271
页数:13
相关论文
共 50 条
  • [1] Electromagnetic waves in conducting media described by a fractional derivative with non-singular kernel
    Gomez-Aguilar, J. F.
    Escobar-Jimenez, R. F.
    Lopez-Lopez, M. G.
    Alvarado-Martinez, V. M.
    Cordova-Fraga, T.
    JOURNAL OF ELECTROMAGNETIC WAVES AND APPLICATIONS, 2016, 30 (11) : 1493 - 1503
  • [2] Quantum description of the electromagnetic waves in homogeneous conducting linear media
    Choi, JR
    JOURNAL OF OPTICS B-QUANTUM AND SEMICLASSICAL OPTICS, 2003, 5 (05) : 409 - 413
  • [3] Fractional electromagnetic waves in plasma and dielectric media with Caputo generalized fractional derivative
    Bhangale, N.
    Kachhia, K. B.
    REVISTA MEXICANA DE FISICA, 2020, 66 (06) : 848 - 855
  • [4] Electromagnetic waves in conducting tubes
    Page, L
    Adams, NI
    PHYSICAL REVIEW, 1937, 52 (06): : 0647 - 0651
  • [5] Electromagnetic waves in conducting tubes
    Schelkunoff, SA
    PHYSICAL REVIEW, 1937, 52 (10): : 1078 - 1078
  • [6] Fractional integro-differential equations for electromagnetic waves in dielectric media
    Tarasov, V. E.
    THEORETICAL AND MATHEMATICAL PHYSICS, 2009, 158 (03) : 355 - 359
  • [7] Fractional integro-differential equations for electromagnetic waves in dielectric media
    V. E. Tarasov
    Theoretical and Mathematical Physics, 2009, 158 : 355 - 359
  • [8] TIME-DEPENDENT GREENS FUNCTION FOR ELECTROMAGNETIC WAVES IN MOVING CONDUCTING MEDIA
    BESIERIS, JM
    COMPTON, RT
    JOURNAL OF MATHEMATICAL PHYSICS, 1967, 8 (12) : 2445 - +
  • [9] FRACTIONAL ELECTROMAGNETIC WAVES IN PLASMA
    Gomez Aguilar, J. F.
    Razo Hernandez, J. R.
    Escobar Jimenez, R. F.
    Astorga-Zaragoza, C. M.
    Olivares Peregrino, V. H.
    Cordova Fraga, T.
    PROCEEDINGS OF THE ROMANIAN ACADEMY SERIES A-MATHEMATICS PHYSICS TECHNICAL SCIENCES INFORMATION SCIENCE, 2016, 17 (01): : 31 - 38
  • [10] HALL WAVES IN CONDUCTING MEDIA
    GUREVICH, LE
    SHIK, AY
    SOVIET PHYSICS SOLID STATE,USSR, 1972, 13 (09): : 2292 - +