Concatenated alignments and the case of the disappearing tree

被引:40
作者
Thiergart, Thorsten [1 ]
Landan, Giddy [2 ]
Martin, William F. [1 ]
机构
[1] Univ Dusseldorf, Inst Mol Evolut, Dusseldorf, Germany
[2] Univ Kiel, Inst Microbiol, Genom Microbiol Grp, Kiel, Germany
基金
欧洲研究理事会;
关键词
Phylogeny; Concatenation; Conflicting signals; Bootstrapping; HORIZONTAL GENE-TRANSFER; SEQUENCE DATA; PHYLOGENY; EVOLUTION; LIFE; EUKARYOTES; GENOMES; ORIGIN; MODEL; RECONCILIATION;
D O I
10.1186/s12862-014-0266-0
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background: Analyzed individually, gene trees for a given taxon set tend to harbour incongruent or conflicting signals. One popular approach to deal with this circumstance is to use concatenated data. But especially in prokaryotes, where lateral gene transfer (LGT) is a natural mechanism of generating genetic diversity, there are open questions as to whether concatenation amplifies or averages phylogenetic signals residing in individual genes. Here we investigate concatenations of prokaryotic and eukaryotic datasets to investigate possible sources of incongruence in phylogenetic trees and to examine the level of overlap between individual and concatenated alignments. Results: We analyzed prokaryotic datasets comprising 248 invidual gene trees from 315 genomes at three taxonomic depths spanning gammaproteobacteria, proteobacteria, and prokaryotes (bacteria plus archaea), and eukaryotic datasets comprising 279 invidual gene trees from 85 genomes at two taxonomic depths: across plants-animals-fungi and within fungi. Consistent with previous findings, the branches in trees made from concatenated alignments are, in general, not supported by any of their underlying individual gene trees, even though the concatenation trees tend to possess high bootstrap proportions values. For the prokaryote data, this observation is independent of phylogenetic depth and sequence conservation. The eukaryotic data show much better agreement between concatenation and single gene trees. LGT frequencies in trees were estimated using established methods. Sequence length in individual alignments, but not sequence divergence, was found to correlate with the generation of branches that correspond to the concatenated tree. Conclusions: The weak correspondence of concatenation trees with single gene trees gives rise to the question where the phylogenetic signal in concatenated trees is coming from. The eukaryote data reveals a better correspondence between individual and concatenation trees than the prokaryote data. The question of whether the lack of correspondence between individual genes and the concatenation tree in the prokaryotic data is due to LGT or phylogenetic artefacts remains unanswered. If LGT is the cause of incongruence between concatenation and individual trees, we would have expected to see greater degrees of incongruence for more divergent prokaryotic data sets, which was not observed, although estimated rates of LGT suggest that LGT is responsible for at least some of the observed incongruence.
引用
收藏
页数:12
相关论文
共 49 条
[1]   Detecting lateral gene transfers by statistical reconciliation of phylogenetic forests [J].
Abby, Sophie S. ;
Tannier, Eric ;
Gouy, Manolo ;
Daubin, Vincent .
BMC BIOINFORMATICS, 2010, 11
[2]   Assessing the Performance of Single-Copy Genes for Recovering Robust Phylogenies [J].
Aguileta, G. ;
Marthey, S. ;
Chiapello, H. ;
Lebrun, M-H. ;
Rodolphe, F. ;
Fournier, E. ;
Gendrault-Jacquemard, A. ;
Giraud, T. .
SYSTEMATIC BIOLOGY, 2008, 57 (04) :613-627
[3]   BASIC LOCAL ALIGNMENT SEARCH TOOL [J].
ALTSCHUL, SF ;
GISH, W ;
MILLER, W ;
MYERS, EW ;
LIPMAN, DJ .
JOURNAL OF MOLECULAR BIOLOGY, 1990, 215 (03) :403-410
[4]   A kingdom-level phylogeny of eukaryotes based on combined protein data [J].
Baldauf, SL ;
Roger, AJ ;
Wenk-Siefert, I ;
Doolittle, WF .
SCIENCE, 2000, 290 (5493) :972-977
[5]   Efficient algorithms for the reconciliation problem with gene duplication, horizontal transfer and loss [J].
Bansal, Mukul S. ;
Alm, Eric J. ;
Kellis, Manolis .
BIOINFORMATICS, 2012, 28 (12) :I283-I291
[6]   Alternative methods for concatenation of core genes indicate a lack of resolution in deep nodes of the prokaryotic phylogeny [J].
Bapteste, E. ;
Susko, E. ;
Leigh, J. ;
Ruiz-Trillo, I. ;
Bucknam, J. ;
Doolittle, W. F. .
MOLECULAR BIOLOGY AND EVOLUTION, 2008, 25 (01) :83-91
[7]   Do orthologous gene phylogenies really support tree-thinking? [J].
Bapteste, E ;
Susko, E ;
Leigh, J ;
MacLeod, D ;
Charlebois, RL ;
Doolittle, WF .
BMC EVOLUTIONARY BIOLOGY, 2005, 5 (1)
[8]   Prokaryotic evolution and the tree of life are two different things [J].
Bapteste, Eric ;
O'Malley, Maureen A. ;
Beiko, Robert G. ;
Ereshefsky, Marc ;
Gogarten, J. Peter ;
Franklin-Hall, Laura ;
Lapointe, Francois-Joseph ;
Dupre, John ;
Dagan, Tal ;
Boucher, Yan ;
Martin, William .
BIOLOGY DIRECT, 2009, 4 :34
[9]   Universal trees based on large combined protein sequence data sets [J].
Brown, JR ;
Douady, CJ ;
Italia, MJ ;
Marshall, WE ;
Stanhope, MJ .
NATURE GENETICS, 2001, 28 (03) :281-285
[10]  
Buneman P., 1971, Mathematics in the Archeological and Historical Sciences: Proceedings of the Anglo-Romanian Conference, P387