DYNAMICAL MODEL REDUCTION METHOD FOR SOLVING PARAMETER-DEPENDENT DYNAMICAL SYSTEMS

被引:21
作者
Billaud-Friess, Marie [1 ]
Nouy, Anthony [1 ]
机构
[1] CNRS, Ecole Cent Nantes, UMR 6183, GeM, Paris, France
关键词
parameter-dependent dynamical system; model order reduction; reduced basis; low-rank approximation; PARTIAL-DIFFERENTIAL-EQUATIONS; REDUCED BASIS METHOD; POSTERIORI ERROR ESTIMATION; EVOLUTION-EQUATIONS; BIORTHOGONAL METHOD; BASIS APPROXIMATION; GREEDY ALGORITHMS; BURGERS-EQUATION; INTERPOLATION; CONVERGENCE;
D O I
10.1137/16M1071493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a projection-based model order reduction method for the solution of parameter-dependent dynamical systems. The proposed method relies on the construction of time dependent reduced spaces generated from evaluations of the solution of the full-order model at some selected parameter values. The approximation obtained by Galerkin projection is the solution of a reduced dynamical system with a modified flux that takes into account the time dependency of the reduced spaces. An a posteriori error estimate is derived, and a greedy algorithm using this error estimate is proposed for the adaptive selection of parameter values. The resulting method can be interpreted as a dynamical low-rank approximation method with a subspace point of view and a uniform control of the error over the parameter set.
引用
收藏
页码:A1766 / A1792
页数:27
相关论文
共 35 条
[11]   Greedy Algorithms for Reduced Bases in Banach Spaces [J].
DeVore, Ronald ;
Petrova, Guergana ;
Wojtaszczyk, Przemyslaw .
CONSTRUCTIVE APPROXIMATION, 2013, 37 (03) :455-466
[12]   REDUCED BASIS APPROXIMATION FOR NONLINEAR PARAMETRIZED EVOLUTION EQUATIONS BASED ON EMPIRICAL OPERATOR INTERPOLATION [J].
Drohmann, Martin ;
Haasdonk, Bernard ;
Ohlberger, Mario .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2012, 34 (02) :A937-A969
[13]   An hp certified reduced basis method for parametrized parabolic partial differential equations [J].
Eftang, Jens L. ;
Knezevic, David J. ;
Patera, Anthony T. .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2011, 17 (04) :395-422
[14]   A posteriori error bounds for the empirical interpolation method [J].
Eftang, Jens L. ;
Grepl, Martin A. ;
Patera, Anthony T. .
COMPTES RENDUS MATHEMATIQUE, 2010, 348 (9-10) :575-579
[15]  
Glas S., 2016, 2 WAYS TREAT TIME RE
[16]   A posteriori error bounds for reduced-basis approximations of parametrized parabolic partial differential equations [J].
Grepl, MA ;
Patera, AT .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2005, 39 (01) :157-181
[17]  
Haasdonk B., 2015, ESAIM-MATH MODEL NUM, V47, P859
[18]  
Haasdonk B, 2014, MODEL REDUC IN PRESS
[19]   Reduced basis method for finite volume approximations of parametrized linear evolution equations [J].
Haasdonk, Bernard ;
Ohlberger, Mario .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2008, 42 (02) :277-302
[20]   Efficient reduced models and a posteriori error estimation for parametrized dynamical systems by offline/online decomposition [J].
Haasdonk, Bernard ;
Ohlberger, Mario .
MATHEMATICAL AND COMPUTER MODELLING OF DYNAMICAL SYSTEMS, 2011, 17 (02) :145-161