DYNAMICAL MODEL REDUCTION METHOD FOR SOLVING PARAMETER-DEPENDENT DYNAMICAL SYSTEMS

被引:21
作者
Billaud-Friess, Marie [1 ]
Nouy, Anthony [1 ]
机构
[1] CNRS, Ecole Cent Nantes, UMR 6183, GeM, Paris, France
关键词
parameter-dependent dynamical system; model order reduction; reduced basis; low-rank approximation; PARTIAL-DIFFERENTIAL-EQUATIONS; REDUCED BASIS METHOD; POSTERIORI ERROR ESTIMATION; EVOLUTION-EQUATIONS; BIORTHOGONAL METHOD; BASIS APPROXIMATION; GREEDY ALGORITHMS; BURGERS-EQUATION; INTERPOLATION; CONVERGENCE;
D O I
10.1137/16M1071493
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a projection-based model order reduction method for the solution of parameter-dependent dynamical systems. The proposed method relies on the construction of time dependent reduced spaces generated from evaluations of the solution of the full-order model at some selected parameter values. The approximation obtained by Galerkin projection is the solution of a reduced dynamical system with a modified flux that takes into account the time dependency of the reduced spaces. An a posteriori error estimate is derived, and a greedy algorithm using this error estimate is proposed for the adaptive selection of parameter values. The resulting method can be interpreted as a dynamical low-rank approximation method with a subspace point of view and a uniform control of the error over the parameter set.
引用
收藏
页码:A1766 / A1792
页数:27
相关论文
共 35 条
[1]   An 'empirical interpolation' method: application to efficient reduced-basis discretization of partial differential equations [J].
Barrault, M ;
Maday, Y ;
Nguyen, NC ;
Patera, AT .
COMPTES RENDUS MATHEMATIQUE, 2004, 339 (09) :667-672
[2]  
Baur U., 2015, COMPARISON METHOD PA
[3]   Comparison of Some Reduced Representation Approximations [J].
Bebendorf, Mario ;
Maday, Yvon ;
Stamm, Benjamin .
REDUCED ORDER METHODS FOR MODELING AND COMPUTATIONAL REDUCTION, 2014, 9 :67-100
[4]  
Benner Peter., 2013, A survey of model reduction methods for parametric systems
[5]   CONVERGENCE RATES FOR GREEDY ALGORITHMS IN REDUCED BASIS METHODS [J].
Binev, Peter ;
Cohen, Albert ;
Dahmen, Wolfgang ;
Devore, Ronald ;
Petrova, Guergana ;
Wojtaszczyk, Przemyslaw .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2011, 43 (03) :1457-1472
[6]   A PRIORI CONVERGENCE OF THE GREEDY ALGORITHM FOR THE PARAMETRIZED REDUCED BASIS METHOD [J].
Buffa, Annalisa ;
Maday, Yvon ;
Patera, Anthony T. ;
Prud'homme, Christophe ;
Turinici, Gabriel .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2012, 46 (03) :595-603
[7]   MODEL REDUCTION FOR LARGE-SCALE SYSTEMS WITH HIGH-DIMENSIONAL PARAMETRIC INPUT SPACE [J].
Bui-Thanh, T. ;
Willcox, K. ;
Ghattas, O. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2008, 30 (06) :3270-3288
[8]   NONLINEAR MODEL REDUCTION VIA DISCRETE EMPIRICAL INTERPOLATION [J].
Chaturantabut, Saifon ;
Sorensen, Danny C. .
SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2010, 32 (05) :2737-2764
[9]   A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations I: Derivation and algorithms [J].
Cheng, Mulin ;
Hou, Thomas Y. ;
Zhang, Zhiwen .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :843-868
[10]   A dynamically bi-orthogonal method for time-dependent stochastic partial differential equations II: Adaptivity and generalizations [J].
Cheng, Mulin ;
Hou, Thomas Y. ;
Zhang, Zhiwen .
JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 242 :753-776