Geometric characterizations of Gromov hyperbolicity

被引:76
作者
Balogh, ZM
Buckley, SM
机构
[1] Univ Bern, Dept Math, CH-3012 Bern, Switzerland
[2] Natl Univ Ireland, Dept Math, Maynooth, Kildare, Ireland
关键词
D O I
10.1007/s00222-003-0287-6
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove the equivalence of three different geometric properties of metric-measure spaces with controlled geometry. The first property is the Gromov hyperbolicity of the quasihyperbolic metric. The second is a slice condition and the third is a combination of the Gehring-Hayman property and a separation condition.
引用
收藏
页码:261 / 301
页数:41
相关论文
共 25 条
[1]   Lengths of radii under conformal maps of the unit disc [J].
Balogh, Z ;
Bonk, M .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (03) :801-804
[2]   Gromov hyperbolicity and the Kobayashi metric on strictly pseudoconvex domains [J].
Balogh, ZM ;
Bonk, M .
COMMENTARII MATHEMATICI HELVETICI, 2000, 75 (03) :504-533
[3]   Pseudoconvexity and Gromov hyperbolicity [J].
Balogh, ZM ;
Bonk, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 1999, 328 (07) :597-602
[4]   Embeddings of Gromov hyperbolic spaces [J].
Bonk, M ;
Schramm, O .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2000, 10 (02) :266-306
[5]  
Bonk M, 1996, GEOMETRIAE DEDICATA, V62, P281
[6]   Conformal metrics on the unit ball in euclidean space [J].
Bonk, M ;
Koskela, P ;
Rohde, S .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 1998, 77 :635-664
[7]  
BONK M, ASTERISQUE, V270
[8]   Poincare inequalities and quasiconformal structure on the boundary of some hyperbolic buildings [J].
Bourdon, M ;
Pajot, H .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1999, 127 (08) :2315-2324
[9]  
Buckley S, 1995, MATH RES LETT, V2, P577
[10]  
Buckley SM, 2001, REV MAT IBEROAM, V17, P607