Molecular-level mixed matrix membranes comprising Pebax® and POSS for hydrogen purification via preferential CO2 removal

被引:115
作者
Li, Yi [1 ]
Chung, Tai-Shung [1 ]
机构
[1] Natl Univ Singapore, Dept Chem & Biomol Engn, Singapore 119260, Singapore
基金
新加坡国家研究基金会;
关键词
Molecular-level mixed matrix membranes; Hydrogen purification; CO2-selective membranes; Pebax (R); POSS; GAS-TRANSPORT PROPERTIES; HOLLOW-FIBER MEMBRANES; POLYMER-CHAIN RIGIDIFICATION; NANOCOMPOSITE MEMBRANES; SEPARATION PERFORMANCE; CROSS-LINKING; PORE BLOCKAGE; POLYIMIDE; OXIDE); PERVAPORATION;
D O I
10.1016/j.ijhydene.2010.07.124
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The molecular-level mixed matrix membranes (MMMs) comprising Pebax (R) and FOSS have been developed by tuning the membrane preparation process in this work. They exhibit a simultaneous enhancement in CO2 permeability and CO2/H-2 selectivity by optimizing the FOSS content at extremely low loadings. This is mainly attributed to the large cavity of FOSS itself and its effect on the segmental-level polymeric chain packing. More interestingly, the Pebax (R)/POSS MMMs reveal a much higher separation performance in the mixed gas test than that in the pure gas test. The highest CO2/H-2 selectivity reaches 52.3 accompanied by CO2 permeability of 136 Barrer at 8 atm and 35 degrees C. This is due to the CO2-induced plasticization that improves the free volume and polymer chain mobility, hence benefiting the interaction between the polymer matrix and penetrant CO2. These features may ensure the superiority of Pebax (R)/POSS molecular-level MMMs as CO2-selective membranes in the industrial application of hydrogen purification. (C) 2010 Professor T. Nejat Veziroglu. Published by Elsevier Ltd. All rights reserved.
引用
收藏
页码:10560 / 10568
页数:9
相关论文
共 48 条
[1]   Effect of random fiber packing on the performance of shell-fed hollow-fiber gas separation modules [J].
Bao, LH ;
Lipscomb, GG .
DESALINATION, 2002, 146 (1-3) :243-248
[2]  
Blume I, 1990, Composite membrane, method of preparation and use, Patent No. [US 4,963,165, 4963165]
[3]  
Bondar VI, 2000, J POLYM SCI POL PHYS, V38, P2051, DOI 10.1002/1099-0488(20000801)38:15<2051::AID-POLB100>3.0.CO
[4]  
2-D
[5]   PEG modified poly(amide-b-ethylene oxide) membranes for CO2 separation [J].
Car, Anja. ;
Stropnik, Chrtomir ;
Yave, Wilfredo ;
Peinemann, Klaus-V. .
JOURNAL OF MEMBRANE SCIENCE, 2008, 307 (01) :88-95
[6]   Surface modification of polyimide membranes by diamines for H2 and CO2 separation [J].
Chung, Tai-Shung ;
Shao, Lu ;
Tin, Pei Shi .
MACROMOLECULAR RAPID COMMUNICATIONS, 2006, 27 (13) :998-1003
[7]  
Deleens G, 1987, THERMOPLASTIC ELASTO, P215
[8]   A NEW MULTIPLET-CLUSTER MODEL FOR THE MORPHOLOGY OF RANDOM IONOMERS [J].
EISENBERG, A ;
HIRD, B ;
MOORE, RB .
MACROMOLECULES, 1990, 23 (18) :4098-4107
[9]   Gas transport properties of segmented poly(ether siloxane urethane urea) membranes [J].
Gomes, D. ;
Peinemann, K. -V. ;
Nunes, S. P. ;
Kujawski, W. ;
Kozakiewicz, J. .
JOURNAL OF MEMBRANE SCIENCE, 2006, 281 (1-2) :747-753
[10]   Evaluation of cellulose-derived carbon molecular sieve membranes for hydrogen separation from light hydrocarbons [J].
Grainger, David ;
Hagg, May-Britt .
JOURNAL OF MEMBRANE SCIENCE, 2007, 306 (1-2) :307-317