Combining interventions to reduce the spread of viral misinformation

被引:73
作者
Bak-Coleman, Joseph B. [1 ,2 ,3 ]
Kennedy, Ian [1 ,4 ]
Wack, Morgan [1 ,5 ]
Beers, Andrew [1 ,6 ]
Schafer, Joseph S. [1 ,6 ]
Spiro, Emma S. [1 ,3 ,4 ]
Starbird, Kate [1 ,7 ]
West, Jevin D. [1 ,3 ]
机构
[1] Univ Washington, Ctr Informed Publ, Seattle, WA 98195 USA
[2] Univ Washington, eSci Inst, Seattle, WA 98195 USA
[3] Univ Washington, Informat Sch, Seattle, WA 98195 USA
[4] Univ Washington, Dept Sociol, Seattle, WA 98195 USA
[5] Univ Washington, Dept Polit Sci, Seattle, WA 98195 USA
[6] Univ Washington, Paul G Allen Sch Comp Sci & Engn, Seattle, WA 98195 USA
[7] Univ Washington, Human Ctr Design & Engn, Seattle, WA 98195 USA
基金
美国国家科学基金会;
关键词
DIFFUSION; SYSTEMS;
D O I
10.1038/s41562-022-01388-6
中图分类号
B84 [心理学];
学科分类号
04 ; 0402 ;
摘要
Misinformation online poses a range of threats, from subverting democratic processes to undermining public health measures. Proposed solutions range from encouraging more selective sharing by individuals to removing false content and accounts that create or promote it. Here we provide a framework to evaluate interventions aimed at reducing viral misinformation online both in isolation and when used in combination. We begin by deriving a generative model of viral misinformation spread, inspired by research on infectious disease. By applying this model to a large corpus (10.5 million tweets) of misinformation events that occurred during the 2020 US election, we reveal that commonly proposed interventions are unlikely to be effective in isolation. However, our framework demonstrates that a combined approach can achieve a substantial reduction in the prevalence of misinformation. Our results highlight a practical path forward as misinformation online continues to threaten vaccination efforts, equity and democratic processes around the globe. Using a mathematical model of viral spread and Twitter data, Bak-Coleman and coauthors show how a combination of interventions, such as fact-checking, nudging and account suspension, can help combat the spread of misinformation.
引用
收藏
页码:1372 / +
页数:12
相关论文
共 31 条
[1]  
[Anonymous], 2011, P 4 ACM INT C WEB SE, DOI [DOI 10.1145/1935826.1935845, 10.1145/1935826.1935845]
[2]  
[Anonymous], 2021, TECHNICAL REPORT
[3]   How Information Snowballs: Exploring the Role of Exposure in Online Rumor Propagation [J].
Arif, Ahmer ;
Shanahan, Kelley ;
Chou, Fang-Ju ;
Dosouto, Yoanna ;
Starbird, Kate ;
Spiro, Emma S. .
ACM CONFERENCE ON COMPUTER-SUPPORTED COOPERATIVE WORK AND SOCIAL COMPUTING (CSCW 2016), 2016, :466-477
[4]   Stewardship of global collective behavior [J].
Bak-Coleman, Joseph B. ;
Alfano, Mark ;
Barfuss, Wolfram ;
Bergstrom, Carl T. ;
Centeno, Miguel A. ;
Couzin, Iain D. ;
Donges, Jonathan F. ;
Galesic, Mirta ;
Gersick, Andrew S. ;
Jacquet, Jennifer ;
Kao, Albert B. ;
Moran, Rachel E. ;
Romanczuk, Pawel ;
Rubenstein, Daniel, I ;
Tombak, Kaia J. ;
Van Bavel, Jay J. ;
Weber, Elke U. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2021, 118 (27)
[5]  
Bakshy Eytan, 2012, P 21 INT C WORLD WID, P519, DOI DOI 10.1145/2187836.2187907
[6]   Emotion shapes the diffusion of moralized content in social networks [J].
Brady, William J. ;
Wills, Julian A. ;
Jost, John T. ;
Tucker, Joshua A. ;
Van Bavel, Jay J. .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2017, 114 (28) :7313-7318
[7]   Revisiting the Foundations of Network Analysis [J].
Butts, Carter T. .
SCIENCE, 2009, 325 (5939) :414-416
[8]   Stan: A Probabilistic Programming Language [J].
Carpenter, Bob ;
Gelman, Andrew ;
Hoffman, Matthew D. ;
Lee, Daniel ;
Goodrich, Ben ;
Betancourt, Michael ;
Brubaker, Marcus A. ;
Guo, Jiqiang ;
Li, Peter ;
Riddell, Allen .
JOURNAL OF STATISTICAL SOFTWARE, 2017, 76 (01) :1-29
[9]   Complex contagions and the weakness of long ties [J].
Centola, Damon ;
Macy, Michael .
AMERICAN JOURNAL OF SOCIOLOGY, 2007, 113 (03) :702-734
[10]  
Foote E., 1856, AM J SCI, V22, P382