On semimonotone matrices with nonnegative principal minors

被引:8
作者
Chu, TH [1 ]
机构
[1] Univ Michigan, Dept Ind & Oper Eng, Ann Arbor, MI 48109 USA
关键词
P-0-matrix; semimonotone matrix; hidden Minkowski matrix; linear complementarity;
D O I
10.1016/S0024-3795(02)00609-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we examine two well-known classes of matrices in linear complementarity theory: semimonotone matrices and matrices possessing nonnegative principal minors. We derive two sets of conditions under which the two classes are identical. (C) 2003 Elsevier Science Inc. All rights reserved.
引用
收藏
页码:147 / 154
页数:8
相关论文
共 10 条
[1]  
CHU TH, 2001, THESIS U MICHIGAN AN
[2]  
Cottle R, 1992, The Linear Complementarity Problem
[3]   LINEAR COMPLEMENTARITY PROBLEM [J].
EAVES, BC .
MANAGEMENT SCIENCE SERIES A-THEORY, 1971, 17 (09) :612-634
[4]   SOME GENERALIZATIONS OF POSITIVE DEFINITENESS AND MONOTONICITY [J].
FIEDLER, M ;
PTAK, V .
NUMERISCHE MATHEMATIK, 1966, 9 (02) :163-&
[5]  
Fiedler M., 1962, CZECH MATH J, V12, P382, DOI [10.21136/CMJ.1962.100526, DOI 10.21136/CMJ.1962.100526]
[6]  
Karamardian S., 1972, MATHEMATICAL PROGRAM, V2, P107, DOI DOI 10.1007/BF01584538
[7]  
Murty K, 1988, LINEAR COMPLEMENTARI
[8]   HIDDEN Z-MATRICES WITH POSITIVE PRINCIPAL MINORS [J].
PANG, JS .
LINEAR ALGEBRA AND ITS APPLICATIONS, 1979, 23 (FEB) :201-215
[9]   A BOUNDARY PROPERTY OF SEMIMARTINGALE REFLECTING BROWNIAN MOTIONS [J].
REIMAN, MI ;
WILLIAMS, RJ .
PROBABILITY THEORY AND RELATED FIELDS, 1988, 77 (01) :87-97
[10]   USEFUL GENERALIZATION OF PO MATRIX CONCEPT [J].
WILLSON, AN .
NUMERISCHE MATHEMATIK, 1971, 17 (01) :62-&