Twenty Years On: RECIST as a Biomarker of Response in Solid Tumours an EORTC Imaging Group - ESOI Joint Paper

被引:24
作者
Fournier, Laure [1 ,2 ,3 ]
de Geus-Oei, Lioe-Fee [1 ,4 ,5 ]
Regge, Daniele [2 ,6 ,7 ]
Oprea-Lager, Daniela-Elena [1 ,8 ]
D'Anastasi, Melvin [2 ,9 ]
Bidaut, Luc [1 ,10 ]
Baeuerle, Tobias [2 ,11 ]
Lopci, Egesta [1 ,12 ]
Cappello, Giovanni [6 ,7 ]
Lecouvet, Frederic [1 ,13 ]
Mayerhoefer, Marius [2 ,14 ,15 ]
Kunz, Wolfgang G. [1 ,2 ,16 ]
Verhoeff, Joost J. C. [1 ,17 ]
Caruso, Damiano [2 ,18 ]
Smits, Marion [1 ,19 ,20 ]
Hoffmann, Ralf-Thorsten [2 ,21 ]
Gourtsoyianni, Sofia [2 ,22 ]
Beets-Tan, Regina [2 ,23 ,24 ]
Neri, Emanuele [2 ,25 ]
deSouza, Nandita M. [1 ,26 ,27 ,28 ,29 ]
Deroose, Christophe M. [1 ,30 ,31 ]
Caramella, Caroline [1 ,32 ]
机构
[1] Imaging Grp, European Org Res & Treatment Canc EORTC, Brussels, Belgium
[2] European Soc Onclg Imaging ESOI, European Soc Radiol, Vienna, Austria
[3] Univ Paris, Hop Europeen Georges Pompidou, APHP,Inst Natl Sante Rech Med INSERM, Dept Radiol,Paris Cardiovasc Res Ctr PARCC,Unite, Paris, France
[4] Leiden Univ, Dept Radiol, Med Ctr, Leiden, Netherlands
[5] Univ Twente, Biomed Photon Imaging Grp, Enschede, Netherlands
[6] Univ Turin, Dept Surg Sci, Turin, Italy
[7] Fdn Piemonte Oncol Ist Ricovero & Cura Carattere, Candiolo Canc Inst, Radiol Unit, Turin, Italy
[8] Vrije Univ VU Univ, Amsterdam Univ Med Ctr, Canc Ctr Amsterdam, Dept Radiol & Nucl Med, Amsterdam, Netherlands
[9] Univ Malta, Mater Dei Hosp, Med Imaging Dept, Msida, Malta
[10] Univ Lincoln, Coll Sci, Lincoln, England
[11] Friedrich Alexander Univ Erlangen Nurnberg FAU, Univ Hosp Erlangen, Inst Radiol, Erlangen, Germany
[12] Humanitas Res Hosp, Ist Ricovero & Cura Carattere Sci IRCCS, Nucl Med Unit, Milan, Italy
[13] Univ Catholic Louvain UCLouvain, Clin Univ St Luc, Inst Rech Experimentale & Clin IREC, Dept Radiol, Brussels, Belgium
[14] Mem Sloan Kettering Canc Ctr, Dept Radiol, New York, NY 10001 USA
[15] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therap, Vienna, Austria
[16] Ludwig Maximilian Univ LMU Munich, Univ Hosp, Dept Radiol, Munich, Germany
[17] Univ Utrecht, Univ Med Ctr Utrecht, Dept Radiotherapy, Utrecht, Netherlands
[18] Sapienza Univ Rome, Dept Med Surg Sci & Translat Med, Rome, Italy
[19] Univ Med Ctr Rotterdam, Dept Radiol & Nucl Med, Erasmus MC, Rotterdam, Netherlands
[20] Erasmus Med Ctr MC, Canc Inst, Brain Tumour Ctr, Rotterdam, Netherlands
[21] Carus Syst Univ Dresden, Univ Hosp, Inst & Policlin Diagnost & Intervent Radiol, Dresden, Germany
[22] Natl & Kapodistrian Univ Athens, Arete Hosp, Sch Med, Dept Radiol, Athens, Greece
[23] Netherlands Canc Inst, Dept Radiol, Amsterdam, Netherlands
[24] Maastricht Univ, Sch Oncol & Dev Biol, Sch Oncol & Dev Biol GROW, Maastricht, Netherlands
[25] Univ Pisa, Dept Translat Res & New Surg & Med Technol, Diagnost & Intervent Radiol, Pisa, Italy
[26] Inst Canc Res, Div Radiotherapy & Imaging, London, England
[27] Royal Marsden Natl Hlth Serv NHS Fdn Trust, London, England
[28] European Soc Radiol EIBALL, European Soc Radiol, Vienna, Austria
[29] Radiol Soc North Amer, Quantitat Imaging Biomarkers Alliance, Oak Brook, IL USA
[30] Univ Hosp Leuven, Nucl Med, Leuven, Belgium
[31] Katholieke Univ Leuven, Dept Imaging & Pathol, Nucl Med & Mol Imaging, Leuven, Belgium
[32] Univ Paris Saclay, Grp Hosp Paris St Joseph Ctr Int Canc, Hop Marie Lannelongue, Dept Radiol, Le Plessis Robinson, France
关键词
tumour; biomarker; imaging; response; RECIST; POSITRON-EMISSION-TOMOGRAPHY; EVALUATION CRITERIA; MAGNETIC-RESONANCE; PET RESPONSE; DCE-MRI; INTEROBSERVER REPRODUCIBILITY; COMPUTED-TOMOGRAPHY; IMATINIB MESYLATE; LESION SELECTION; PROSTATE-CANCER;
D O I
10.3389/fonc.2021.800547
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Response evaluation criteria in solid tumours (RECIST) v1.1 are currently the reference standard for evaluating efficacy of therapies in patients with solid tumours who are included in clinical trials, and they are widely used and accepted by regulatory agencies. This expert statement discusses the principles underlying RECIST, as well as their reproducibility and limitations. While the RECIST framework may not be perfect, the scientific bases for the anticancer drugs that have been approved using a RECIST-based surrogate endpoint remain valid. Importantly, changes in measurement have to meet thresholds defined by RECIST for response classification within thus partly circumventing the problems of measurement variability. The RECIST framework also applies to clinical patients in individual settings even though the relationship between tumour size changes and outcome from cohort studies is not necessarily translatable to individual cases. As reproducibility of RECIST measurements is impacted by reader experience, choice of target lesions and detection/interpretation of new lesions, it can result in patients changing response categories when measurements are near threshold values or if new lesions are missed or incorrectly interpreted. There are several situations where RECIST will fail to evaluate treatment-induced changes correctly; knowledge and understanding of these is crucial for correct interpretation. Also, some patterns of response/progression cannot be correctly documented by RECIST, particularly in relation to organ-site (e.g. bone without associated soft-tissue lesion) and treatment type (e.g. focal therapies). These require specialist reader experience and communication with oncologists to determine the actual impact of the therapy and best evaluation strategy. In such situations, alternative imaging markers for tumour response may be used but the sources of variability of individual imaging techniques need to be known and accounted for. Communication between imaging experts and oncologists regarding the level of confidence in a biomarker is essential for the correct interpretation of a biomarker and its application to clinical decision-making. Though measurement automation is desirable and potentially reduces the variability of results, associated technical difficulties must be overcome, and human adjudications may be required.
引用
收藏
页数:17
相关论文
共 145 条
[1]   A Systematic Review of the Factors Affecting Accuracy of SUV Measurements [J].
Adams, Michael C. ;
Turkington, Timothy G. ;
Wilson, Joshua M. ;
Wong, Terence Z. .
AMERICAN JOURNAL OF ROENTGENOLOGY, 2010, 195 (02) :310-320
[2]   EANM/EARL harmonization strategies in PET quantification: from daily practice to multicentre oncological studies [J].
Aide, Nicolas ;
Lasnon, Charline ;
Veit-Haibach, Patrick ;
Sera, Terez ;
Sattler, Bernhard ;
Boellaard, Ronald .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2017, 44 :S17-S31
[3]   Influence of Statistical Fluctuation on Reproducibility and Accuracy of SUVmax and SUVpeak: A Phantom Study [J].
Akamatsu, Go ;
Ikari, Yasuhiko ;
Nishida, Hiroyuki ;
Nishio, Tomoyuki ;
Ohnishi, Akihito ;
Maebatake, Akira ;
Sasaki, Masayuki ;
Senda, Michio .
JOURNAL OF NUCLEAR MEDICINE TECHNOLOGY, 2015, 43 (03) :222-226
[4]   Evaluating Continuous Tumor Measurement-Based Metrics as Phase II Endpoints for Predicting Overall Survival [J].
An, Ming-Wen ;
Dong, Xinxin ;
Meyers, Jeffrey ;
Han, Yu ;
Grothey, Axel ;
Bogaerts, Jan ;
Sargent, Daniel J. ;
Mandrekar, Sumithra J. .
JNCI-JOURNAL OF THE NATIONAL CANCER INSTITUTE, 2015, 107 (11)
[5]   Comparison of Continuous versus Categorical Tumor Measurement-Based Metrics to Predict Overall Survival in Cancer Treatment Trials [J].
An, Ming-Wen ;
Mandrekar, Sumithra J. ;
Branda, Megan E. ;
Hillman, Shauna L. ;
Adjei, Alex A. ;
Pitot, Henry C. ;
Goldberg, Richard M. ;
Sargent, Daniel J. .
CLINICAL CANCER RESEARCH, 2011, 17 (20) :6592-6599
[6]   Combined correction of recovery effect and motion blur for SUV quantification of solitary pulmonary nodules in FDG PET/CT [J].
Apostolova, Ivayla ;
Wiemker, Rafael ;
Paulus, Timo ;
Kabus, Sven ;
Dreilich, Thomas ;
van den Hoff, Joerg ;
Plotkin, Michail ;
Mester, Janos ;
Brenner, Winfried ;
Buchert, Ralph ;
Klutmann, Susanne .
EUROPEAN RADIOLOGY, 2010, 20 (08) :1868-1877
[7]   DCE-MRI of the Liver: Effect of Linear and Nonlinear Conversions on Hepatic Perfusion Quantification and Reproducibility [J].
Aronhime, Shimon ;
Calcagno, Claudia ;
Jajamovich, Guido H. ;
Dyvorne, Hadrien Arezki ;
Robson, Philip ;
Dieterich, Douglas ;
Fiel, M. Isabel ;
Martel-Laferriere, Valerie ;
Chatterji, Manjil ;
Rusinek, Henry ;
Taouli, Bachir .
JOURNAL OF MAGNETIC RESONANCE IMAGING, 2014, 40 (01) :90-98
[8]   A mathematical model of ctDNA shedding predicts tumor detection size [J].
Avanzini, Stefano ;
Kurtz, David M. ;
Chabon, Jacob J. ;
Moding, Everett J. ;
Hori, Sharon Seiko ;
Gambhir, Sanjiv Sam ;
Alizadeh, Ash A. ;
Diehn, Maximilian ;
Reiter, Johannes G. .
SCIENCE ADVANCES, 2020, 6 (50)
[9]   Automated quantitative assessment of oncological disease progression using deep learning [J].
Barash, Yiftach ;
Klang, Eyal .
ANNALS OF TRANSLATIONAL MEDICINE, 2019, 7
[10]   Discrepancies of assessments in a RECIST 1.1 phase II clinical trial - association between adjudication rate and variability in images and tumors selection [J].
Beaumont, Hubert ;
Evans, Tracey L. ;
Klifa, Catherine ;
Guermazi, Ali ;
Hong, Sae Rom ;
Chadjaa, Mustapha ;
Monostori, Zsuzsanna .
CANCER IMAGING, 2018, 18