Approximate solution for integral equations involving linear Toeplitz plus Hankel parts

被引:1
作者
Dung, Vu Tien [1 ]
Ha, Quan Thai [1 ]
机构
[1] VNU Univ Sci, Dept Math, 334 Nguyen Trai, Hanoi, Vietnam
关键词
First-kind integral equations; Toeplitz plus Hankel kernels; Ill-posed problem; Lavrentiev and iterative regularizations; Finite Hartley transforms; Parallel splitting-up methods; Monotone inclusion; REGULARIZATION;
D O I
10.1007/s40314-021-01558-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose three approximate methods using regularization techniques and finite Hartley transforms for solving first-kind integral equations involving linear Toeplitz plus Hankel parts. Numerical examples are given for illustrating these new algorithms.
引用
收藏
页数:20
相关论文
共 18 条
[1]  
Alber Y., 2006, NONLINEAR ILL POSED
[2]   Parallel iterative regularization methods for solving systems of ill-posed equations [J].
Anh, Pham Ky ;
Van Chung, Cao .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 212 (02) :542-550
[3]  
[Anonymous], ELECT T NUMER ANAL
[4]  
Bauschke HH, 2011, CMS BOOKS MATH, P1, DOI 10.1007/978-1-4419-9467-7
[5]  
CASTRO L, 2014, LIB MATH N S, P1
[6]   New convolutions and their applicability to integral equations of Wiener-Hopf plus Hankel type [J].
Castro, Luis P. ;
Guerra, Rita C. ;
Nguyen Minh Tuan .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2020, 43 (07) :4835-4846
[7]   Iterative regularization methods with new stepsize rules for solving variational inclusions [J].
Dang Van Hieu ;
Pham Ky Anh ;
Le Dung Muu ;
Strodiot, Jean Jacques .
JOURNAL OF APPLIED MATHEMATICS AND COMPUTING, 2022, 68 (01) :571-599
[8]   Generalized inverses and solution of equations with Toeplitz plus Hankel operators [J].
Didenko V.D. ;
Silbermann B. .
Boletín de la Sociedad Matemática Mexicana, 2016, 22 (2) :645-667
[9]  
Groetsch C. W., 2007, Journal of Physics: Conference Series, V73, P012001, DOI 10.1088/1742-6596/73/1/012001
[10]  
Kaltenbacher B, 2008, RADON SER COMPUT APP, V6, P1, DOI 10.1515/9783110208276