Topology optimization of periodic lattice structures taking into account strain gradient

被引:46
作者
Da, Daicong [1 ,2 ]
Yvonnet, Julien [2 ]
Xia, Liang [3 ]
Minh Vuong Le [2 ]
Li, Guangyao [1 ]
机构
[1] Hunan Univ, State Key Lab Adv Design & Mfg Vehicle Body, Changsha, Hunan, Peoples R China
[2] Univ Paris Est, CNRS, Lab Modelisat & Simulat Multi Echelle MSME, UMR 8208, 5 Bd Descartes, F-77454 Marne La Vallee, France
[3] Huazhong Univ Sci & Technol, State Key Lab Digital Mfg Equipment & Technol, Wuhan, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
Strain gradient; Non-separated scales; Lattice structures; Computational homogenization; Topology optimization; BESO; VISCOELASTIC COMPOSITE-MATERIALS; LEVEL-SET METHOD; HOMOGENIZATION SCHEME; SHAPE OPTIMIZATION; BULK MODULUS; DESIGN; MICROSTRUCTURES; MATLAB;
D O I
10.1016/j.compstruc.2018.09.003
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We present a topology optimization for lattice structures in the case of non-separated scales, i.e. when the characteristic dimensions of the periodic unit cells in the lattice are not much smaller than the dimensions of the whole structure. The present method uses a coarse mesh corresponding to a homogenized medium taking into strain gradient through a non-local numerical homogenization method. Then, the topological optimization procedure only uses the values at the nodes of the coarse mesh, reducing drastically the computational times. We show that taking into account the strain gradient within the topological optimization procedure brings significant increase in the resulting stiffness of the optimized lattice structure when scales are not separated, as compared to using a homogenized model based on the scale separation assumption. (C) 2018 Elsevier Ltd. All rights reserved.
引用
收藏
页码:28 / 40
页数:13
相关论文
共 47 条
[1]   Topology optimisation of manufacturable microstructural details without length scale separation using a spectral coarse basis preconditioner [J].
Alexandersen, Joe ;
Lazarov, Boyan S. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2015, 290 :156-182
[2]   Structural optimization using sensitivity analysis and a level-set method [J].
Allaire, G ;
Jouve, F ;
Toader, AM .
JOURNAL OF COMPUTATIONAL PHYSICS, 2004, 194 (01) :363-393
[3]  
Allaire G., 2012, Shape Optimization by the Homogenization Method, V146
[4]   Topology optimization of periodic microstructures for enhanced dynamic properties of viscoelastic composite materials [J].
Andreassen, Erik ;
Jensen, Jakob Sondergaard .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 49 (05) :695-705
[5]  
Bendse Martin P., 1989, Struct Optim, V1, P193, DOI [DOI 10.1007/BF01650949, 10.1007/BF01650949]
[6]   GENERATING OPTIMAL TOPOLOGIES IN STRUCTURAL DESIGN USING A HOMOGENIZATION METHOD [J].
BENDSOE, MP ;
KIKUCHI, N .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1988, 71 (02) :197-224
[7]   Topology optimization of microstructures of viscoelastic damping materials for a prescribed shear modulus [J].
Chen, Wenjiong ;
Liu, Shutian .
STRUCTURAL AND MULTIDISCIPLINARY OPTIMIZATION, 2014, 50 (02) :287-296
[8]  
Chu DN, 2007, FINITE ELEM ANAL DES, V43, P1039
[9]   Topology Optimized Architectures with Programmable Poisson's Ratio over Large Deformations [J].
Clausen, Anders ;
Wang, Fengwen ;
Jensen, Jakob S. ;
Sigmund, Ole ;
Lewis, Jennifer A. .
ADVANCED MATERIALS, 2015, 27 (37) :5523-5527
[10]  
Da D, 2018, INT J NUMER METH ENG, P1