High thermal conductivity and ultrahigh thermal boundary conductance of homoepitaxial AlN thin films

被引:30
作者
Alvarez-Escalante, Gustavo [1 ]
Page, Ryan [2 ]
Hu, Renjiu [1 ]
Xing, Huili Grace [2 ,3 ]
Jena, Debdeep [2 ,3 ]
Tian, Zhiting [1 ]
机构
[1] Cornell Univ, Sibley Sch Mech & Aerosp Engn, Ithaca, NY 14853 USA
[2] Cornell Univ, Dept Mat Sci & Engn, Ithaca, NY 14853 USA
[3] Cornell Univ, Sch Elect & Comp Engn, Ithaca, NY 14853 USA
基金
美国国家科学基金会;
关键词
TEMPERATURE; TRANSPORT;
D O I
10.1063/5.0078155
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Wurtzite aluminum nitride (AlN) has attracted increasing attention for high-power and high-temperature operations due to its high piezoelectricity, ultrawide-bandgap, and large thermal conductivity k. The k of epitaxially grown AlN on foreign substrates has been investigated; however, no thermal studies have been conducted on homoepitaxially grown AlN. In this study, the thickness dependent k and thermal boundary conductance G of homoepitaxial AlN thin films were systematically studied using the optical pump-probe method of frequency-domain thermoreflectance. Our results show that k increases with the thickness and k values are among the highest reported for film thicknesses of 200 nm, 500 nm, and 1 mu m, with values of 71.95, 152.04, and 195.71 W/(mK), respectively. Our first-principles calculations show good agreement with our measured data. Remarkably, the G between the epilayer and the substrate reported high values of 328, 477, 1180, and 2590 MW/(m(2)K) for sample thicknesses of 200 nm, 500 nm, 1 mu m, and 3 mu m, respectively. The high k and ultrahigh G of homoepitaxially grown AlN are very promising for efficient heat dissipation, which helps in device design and has advanced applications in micro-electromechanical systems, ultraviolet photonics, and high-power electronics. (c) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
引用
收藏
页数:6
相关论文
共 37 条
[1]   Achieving high thermal conductivity from AlN films deposited by high-power impulse magnetron sputtering [J].
Aissa, K. Ait ;
Semmar, N. ;
Achour, A. ;
Simon, Q. ;
Petit, A. ;
Camus, J. ;
Boulmer-Leborgne, C. ;
Djouadi, M. A. .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2014, 47 (35)
[2]   Size dictated thermal conductivity of GaN [J].
Beechem, Thomas E. ;
McDonald, Anthony E. ;
Fuller, Elliot J. ;
Talin, A. Alec ;
Rost, Christina M. ;
Maria, Jon-Paul ;
Gaskins, John T. ;
Hopkins, Patrick E. ;
Allerman, Andrew A. .
JOURNAL OF APPLIED PHYSICS, 2016, 120 (09)
[3]   Substrate-dependent thermal conductivity of aluminum nitride thin-films processed at low temperature [J].
Belkerk, B. E. ;
Bensalem, S. ;
Soussou, A. ;
Carette, M. ;
Al Brithen, H. ;
Djouadi, M. A. ;
Scudeller, Y. .
APPLIED PHYSICS LETTERS, 2014, 105 (22)
[4]   Structural-dependent thermal conductivity of aluminium nitride produced by reactive direct current magnetron sputtering [J].
Belkerk, B. E. ;
Soussou, A. ;
Carette, M. ;
Djouadi, M. A. ;
Scudeller, Y. .
APPLIED PHYSICS LETTERS, 2012, 101 (15)
[5]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[6]   Experimental observation of high intrinsic thermal conductivity of AlN [J].
Cheng, Zhe ;
Koh, Yee Rui ;
Mamun, Abdullah ;
Shi, Jingjing ;
Bai, Tingyu ;
Huynh, Kenny ;
Yates, Luke ;
Liu, Zeyu ;
Li, Ruiyang ;
Lee, Eungkyu ;
Liao, Michael E. ;
Wang, Yekan ;
Yu, Hsuan Ming ;
Kushimoto, Maki ;
Luo, Tengfei ;
Goorsky, Mark S. ;
Hopkins, Patrick E. ;
Amano, Hiroshi ;
Khan, Asif ;
Graham, Samuel .
PHYSICAL REVIEW MATERIALS, 2020, 4 (04)
[7]   Integration of polycrystalline Ga2O3 on diamond for thermal management [J].
Cheng, Zhe ;
Wheeler, Virginia D. ;
Bai, Tingyu ;
Shi, Jingjing ;
Tadjer, Marko J. ;
Feygelson, Tatyana ;
Hobart, Karl D. ;
Goorsky, Mark S. ;
Graham, Samuel .
APPLIED PHYSICS LETTERS, 2020, 116 (06)
[8]   Tunable Thermal Energy Transport across Diamond Membranes and Diamond-Si Interfaces by Nanoscale Graphoepitaxy [J].
Cheng, Zhe ;
Bai, Tingyu ;
Shi, Jingling ;
Feng, Tianli ;
Wang, Yekan ;
Mecklenburg, Matthew ;
Li, Chao ;
Hobart, Karl D. ;
Feygelson, Tatyana I. ;
Tadjer, Marko J. ;
Pate, Bradford B. ;
Foley, Brian M. ;
Yates, Luke ;
Pantelides, Sokrates T. ;
Cola, Baratunde A. ;
Goorsky, Mark ;
Graham, Samuel .
ACS APPLIED MATERIALS & INTERFACES, 2019, 11 (20) :18517-18527
[9]  
Cho JW, 2012, COMP SEMICOND INTEGR
[10]   Molecular beam homoepitaxy on bulk AlN enabled by aluminum-assisted surface cleaning [J].
Cho, YongJin ;
Chang, Celesta ;
Lee, Kevin ;
Gong, Mingli ;
Nomoto, Kazuki ;
Toita, Masato ;
Schowalter, Leo J. ;
Muller, David A. ;
Jena, Debdeep ;
Xing, Huili Grace .
APPLIED PHYSICS LETTERS, 2020, 116 (17)