Characterization of solutions of non-symmetric algebraic Riccati equations

被引:5
|
作者
Dilip, A. Sanand Amita [1 ]
Pillai, Harish K. [1 ]
机构
[1] Indian Inst Technol, Dept Elect Engn, Powai, India
关键词
Non-symmetric algebraic Riccati equation; Sylvester equation; Poset; FACTORIZATION;
D O I
10.1016/j.laa.2016.06.032
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give a new characterization of the solution set of non symmetric algebraic Riccati equations involving real matrices. Our characterization involves the use of invariant subspaces of the, coefficient matrices. We also give a poset structure on the solutions of ARE and explore some properties of this poset (partially ordered set). (C) 2016 Elsevier Inc. All rights reserved.
引用
收藏
页码:356 / 372
页数:17
相关论文
共 50 条
  • [21] On Parameter Dependence of Solutions of Algebraic Riccati Equations
    Ran, Andre C. M.
    Rodman, Leiba
    MATHEMATICS OF CONTROL SIGNALS AND SYSTEMS, 1988, 1 (03) : 269 - 284
  • [22] On the strong solutions of generalized algebraic Riccati equations
    Xin, X
    Mita, T
    SICE '98 - PROCEEDINGS OF THE 37TH SICE ANNUAL CONFERENCE: INTERNATIONAL SESSION PAPERS, 1998, : 791 - 796
  • [23] ON HERMITIAN SOLUTIONS OF THE SYMMETRIC ALGEBRAIC RICCATI EQUATION.
    Gohberg, I.
    Lancaster, P.
    Rodman, L.
    SIAM Journal on Control and Optimization, 1986, 24 (06): : 1323 - 1334
  • [24] Algebraic polynomials with random non-symmetric coefficients
    Farahmand, K.
    Stretch, C. T.
    STATISTICS & PROBABILITY LETTERS, 2008, 78 (11) : 1305 - 1313
  • [25] An algebraic approach to the non-symmetric Macdonald polynomial
    Nishino, A
    Ujino, H
    Wadati, M
    NUCLEAR PHYSICS B, 1999, 558 (03) : 589 - 603
  • [26] Infinitely many positive solutions for nonlinear equations with non-symmetric potentials
    Ao, Weiwei
    Wei, Juncheng
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2014, 51 (3-4) : 761 - 798
  • [27] Infinitely many positive solutions for nonlinear equations with non-symmetric potentials
    Weiwei Ao
    Juncheng Wei
    Calculus of Variations and Partial Differential Equations, 2014, 51 : 761 - 798
  • [28] Strong Solutions and Maximal Solutions of Generalized Algebraic Riccati Equations
    Xin, Xin
    47TH IEEE CONFERENCE ON DECISION AND CONTROL, 2008 (CDC 2008), 2008, : 528 - 533
  • [29] Existence, localization and approximation of solution of symmetric algebraic Riccati equations
    Hernandez-Veron, M. A.
    Romero, N.
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2018, 76 (01) : 187 - 203
  • [30] An Improvement of the Newton Method for Solving Symmetric Algebraic Riccati Equations
    Hernandez-Veron, M. A.
    Romero, N.
    MEDITERRANEAN JOURNAL OF MATHEMATICS, 2023, 20 (05)