Comparison of linear-mode avalanche photodiode lidar receivers for use at one micron wavelength

被引:21
作者
Krainak, Michael A. [1 ]
Sun, Xiaoli [1 ]
Yang, Guangning [1 ]
Lu, Wei [2 ]
机构
[1] NASA, Goddard Space Flight Ctr, Code 554, Greenbelt, MD 20771 USA
[2] MEI Technol, Seabrook, MD 20706 USA
来源
ADVANCED PHOTON COUNTING TECHNIQUES IV | 2010年 / 7681卷
关键词
Avalanche photodiodes; lidar; photodetectors; LASER ALTIMETER;
D O I
10.1117/12.852906
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Silicon avalanche photodiode (APD) detectors have been used in most space lidar receivers to date with a sensitivity that is typically hundreds of photons per pulse at 1064 nm, and is limited by the quantum efficiency, APD gain noise, dark current, and preamplifier noise. We have purchased and tested InGaAs avalanche photodiode based receivers from several US vendors as possible alternatives. We present our measurement results and a comparison of their performance to our baseline silicon APD. Using a multichannel scalar instrument, we observed undesired dark counts in some devices, even though the APDs were biased below the breakdown voltage. These effects are typically associated with over-biased Geiger-mode photon-counting, but we demonstrate that the probability distribution indicates their necessity at the high gains typically associated with operation slightly below the breakdown voltage. We measured the following parameters for our 0.8 mm diameter baseline silicon APD receiver: excess noise factor 2.5, bandwidth 210 MHz, minimum detectable pulse (10 ns) in incident photons 110 photons, noise equivalent power 30 fW/rt-Hz. We present our test procedures and results for the InGaAs based APD receivers.
引用
收藏
页数:13
相关论文
共 13 条
[1]   Geoscience Laser Altimeter System (GLAS) on the ICESat mission: On-orbit measurement performance [J].
Abshire, JB ;
Sun, XL ;
Riris, H ;
Sirota, JM ;
McGarry, JF ;
Palm, S ;
Yi, DH ;
Liiva, P .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (21) :1-4
[2]   Mars Orbiter Laser Altimeter: receiver model and performance analysis [J].
Abshire, JB ;
Sun, XL ;
Afzal, RS .
APPLIED OPTICS, 2000, 39 (15) :2449-2460
[3]   The Mercury Laser Altimeter instrument for the MESSENGER mission [J].
Cavanaugh, John F. ;
Smith, James C. ;
Sun, Xiaoli ;
Bartels, Arlin E. ;
Ramos-Izquierdo, Luis ;
Krebs, Danny J. ;
McGarry, Jan F. ;
Trunzo, Raymond ;
Novo-Gradac, Anne Marie ;
Britt, Jamie L. ;
Karsh, Jerry ;
Katz, Richard B. ;
Lukemire, Alan T. ;
Szymkiewicz, Richard ;
Berry, Daniel L. ;
Swinski, Joseph P. ;
Neumann, Gregory A. ;
Zuber, Maria T. ;
Smith, David E. .
SPACE SCIENCE REVIEWS, 2007, 131 (1-4) :451-479
[4]   Performance evaluation of the near-earth asteroid rendezvous (NEAR) laser rangefinder [J].
Cole, TD ;
Davidson, F .
PHOTONICS FOR SPACE ENVIRONMENTS IV, 1996, 2811 :156-168
[5]  
H Riris, 2008, C LAS EL QUANT EL LA
[6]  
Krainak M. A., 2009, P SPIE, V7320
[7]   Estimates of forest canopy height and aboveground biomass using ICESat [J].
Lefsky, MA ;
Harding, DJ ;
Keller, M ;
Cohen, WB ;
Carabajal, CC ;
Espirito-Santo, FD ;
Hunter, MO ;
de Oliveira, R .
GEOPHYSICAL RESEARCH LETTERS, 2005, 32 (22) :1-4
[8]   Mars Orbiter Laser Altimeter pulse width measurements and footprint-scale roughness [J].
Neumann, GA ;
Abshire, JB ;
Aharonson, O ;
Garvin, JB ;
Sun, X ;
Zuber, MT .
GEOPHYSICAL RESEARCH LETTERS, 2003, 30 (11)
[9]   Recent achievements in single photon detectors and their applications [J].
Prochazka, I ;
Hamal, K ;
Sopko, B .
JOURNAL OF MODERN OPTICS, 2004, 51 (9-10) :1289-1313
[10]   Topography of the moon from the Clementine lidar [J].
Smith, DE ;
Zuber, MT ;
Neumann, GA ;
Lemoine, FG .
JOURNAL OF GEOPHYSICAL RESEARCH-PLANETS, 1997, 102 (E1) :1591-1611