Reinforcement Learning for Digital Quantum Simulation

被引:30
作者
Bolens, Adrien [1 ]
Heyl, Markus [1 ]
机构
[1] Max Planck Inst Phys Komplexer Syst, Nothnitzer Str 38, D-01187 Dresden, Germany
基金
欧洲研究理事会;
关键词
We acknowledge Peter Zoller; Rick van Bijnen; and Christian Kokail for the fruitful discussions. This project has received funding from the European Research Council (ERC) under the European Unions Horizon 2020 research and innovation programme (Grant Agreement No. 853443); and M. H. further acknowledges support by the Deutsche Forschungsgemeinschaft via the Gottfried Wilhelm Leibniz Prize program;
D O I
10.1103/PhysRevLett.127.110502
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Digital quantum simulation on quantum computers provides the potential to simulate the unitary evolution of any many-body Hamiltonian with bounded spectrum by discretizing the time evolution operator through a sequence of elementary quantum gates. A fundamental challenge in this context originates from experimental imperfections, which critically limits the number of attainable gates within a reasonable accuracy and therefore the achievable system sizes and simulation times. In this work, we introduce a reinforcement learning algorithm to systematically build optimized quantum circuits for digital quantum simulation upon imposing a strong constraint on the number of quantum gates. With this we consistently obtain quantum circuits that reproduce physical observables with as little as three entangling gates for long times and large system sizes up to 16 qubits. As concrete examples we apply our formalism to a long-range Ising chain and the lattice Schwinger model. Our method demonstrates that digital quantum simulation on noisy intermediate scale quantum devices can be pushed to much larger scale within the current experimental technology by a suitable engineering of quantum circuits using reinforcement learning.
引用
收藏
页数:6
相关论文
共 33 条
[21]   Scalable Quantum Simulation of Molecular Energies [J].
O'Malley, P. J. J. ;
Babbush, R. ;
Kivlichan, I. D. ;
Romero, J. ;
McClean, J. R. ;
Barends, R. ;
Kelly, J. ;
Roushan, P. ;
Tranter, A. ;
Ding, N. ;
Campbell, B. ;
Chen, Y. ;
Chen, Z. ;
Chiaro, B. ;
Dunsworth, A. ;
Fowler, A. G. ;
Jeffrey, E. ;
Lucero, E. ;
Megrant, A. ;
Mutus, J. Y. ;
Neeley, M. ;
Neill, C. ;
Quintana, C. ;
Sank, D. ;
Vainsencher, A. ;
Wenner, J. ;
White, T. C. ;
Coveney, P. V. ;
Love, P. J. ;
Neven, H. ;
Aspuru-Guzik, A. ;
Martinis, J. M. .
PHYSICAL REVIEW X, 2016, 6 (03)
[22]  
Pinsker M. S., 1964, INFORM INFORM STABIL
[23]   Digital Quantum Simulation of Spin Models with Circuit Quantum Electrodynamics [J].
Salathe, Y. ;
Mondal, M. ;
Oppliger, M. ;
Heinsoo, J. ;
Kurpiers, P. ;
Potocnik, A. ;
Mezzacapo, A. ;
Heras, U. Las ;
Lamata, L. ;
Solano, E. ;
Filipp, S. ;
Wallraff, A. .
PHYSICAL REVIEW X, 2015, 5 (02)
[24]   GAUGE INVARIANCE AND MASS .2. [J].
SCHWINGER, J .
PHYSICAL REVIEW, 1962, 128 (05) :2425-&
[25]   Digital quantum simulation, Trotter errors, and quantum chaos of the kicked top [J].
Sieberer, Lukas M. ;
Olsacher, Tobias ;
Elben, Andreas ;
Heyl, Markus ;
Hauke, Philipp ;
Haake, Fritz ;
Zoller, Peter .
NPJ QUANTUM INFORMATION, 2019, 5 (1)
[26]  
Sutton RS, 2018, ADAPT COMPUT MACH LE, P1
[27]   RELATIONSHIP BETWEEN D-DIMENSIONAL QUANTAL SPIN SYSTEMS AND (D+1)-DIMENSIONAL ISING SYSTEMS - EQUIVALENCE, CRITICAL EXPONENTS AND SYSTEMATIC APPROXIMANTS OF PARTITION-FUNCTION AND SPIN CORRELATIONS [J].
SUZUKI, M .
PROGRESS OF THEORETICAL PHYSICS, 1976, 56 (05) :1454-1469
[28]  
Trotter H. F., 1959, Proc. Am. Math. Soc, V10, P545, DOI [10.2307/2033649, DOI 10.2307/2033649, 10.1090/S0002-9939-1959-0108732-6]
[29]  
WATKINS CJCH, 1992, MACH LEARN, V8, P279, DOI 10.1007/BF00992698
[30]   Exploring Localization in Nuclear Spin Chains [J].
Wei, Ken Xuan ;
Ramanathan, Chandrasekhar ;
Cappellaro, Paola .
PHYSICAL REVIEW LETTERS, 2018, 120 (07)