Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems: convection-diffusion type

被引:28
作者
Li, J
Navon, IM [1 ]
机构
[1] Florida State Univ, Dept Math, Tallahassee, FL 32306 USA
[2] Florida State Univ, Supercomp Computat Res Inst, Tallahassee, FL 32306 USA
关键词
D O I
10.1016/S0045-7825(97)00329-0
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
In this paper we consider the standard bilinear finite element method (FEM) and the corresponding streamline diffusion FEM for the singularly perturbed elliptic boundary value problem -epsilon(alpha)(partial derivative(2)u/partial derivative x(2) + partial derivative(2)u/partial derivative y(2))- b(x, y) del u + a(alpha)(x, y)u =f(x, y) in the two space dimensions. By using the asymptotic expansion method of Vishik and Lyustemik [36] and the technique we used in [21,22], we prove that the standard bilinear FEM on a Shishkin type mesh achieves first-order uniform convergence rate globally in L-2 norm for both the ordinary exponential boundary layer case and the parabolic boundary layer case. Extensive numerical results are carried out for both cases. The results show that our methods perform much better than either the classical standard or streamline diffusion FEM. (C) 1998 Elsevier Science S.A. All rights reserved.
引用
收藏
页码:49 / 78
页数:30
相关论文
共 40 条
[31]  
Roos HG, 1996, NUMERICAL METHODS SI
[32]  
SAAD Y, 1996, SPARSKIT BASIC TOOL
[33]  
Schultz M.H., 1973, SPLINE ANAL
[34]   The p and hp versions of the finite element method for problems with boundary layers [J].
Schwab, C ;
Suri, M .
MATHEMATICS OF COMPUTATION, 1996, 65 (216) :1403-1429
[35]   ASYMPTOTIC ANALYSIS OF A SINGULAR PERTURBATION PROBLEM [J].
SHIH, SD ;
KELLOGG, RB .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 1987, 18 (05) :1467-1511
[36]  
sik M. I. Vi., 1962, Amer. Math. Soc. Transl. Ser., V20, P239
[37]  
Vasil'eva A.B., 1995, BOUNDARY FUNCTION ME
[38]  
Wahlbin L.B., 1991, Handbook of Numerical Analysis, VII, P353
[39]  
ZHOU G, 1996, NUMER METH PART D E, V12, P123
[40]  
Zienkiewicz O., 2014, FINITE ELEMENT METHO