The existence of a factorized unbounded operator between Frechet spaces

被引:1
作者
Kizgut, Ersin [1 ]
Yurdakul, Murat [2 ]
机构
[1] Univ Politecn Valencia, IUMPA, E-46071 Valencia, Spain
[2] Middle East Tech Univ, Dept Math, TR-06800 Ankara, Turkey
关键词
Frechet spaces; Kothe spaces; unbounded operators; bounded factorization property;
D O I
10.1142/S1793557120500175
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
For locally convex spaces E and F, the continuous linear map T : E -> F is called bounded if there is a zero neighborhood U of E such that T(U) is bounded in F. Our main result is that the existence of an unbounded operator T between Frechet spaces E and F which factors through a third Frechet space G ends up with the fact that the triple (E, G, F) has an infinite dimensional closed common nuclear Kothe subspace, provided that F has the property (y).
引用
收藏
页数:3
相关论文
共 10 条
[1]  
Bessaga C., 1961, Bulletin de Facademie polonaise des sciences. Serie des sciences math., VIX, P677
[2]   Bounded and unbounded operators between Kothe spaces [J].
Djakov, PB ;
Ramanujan, MS .
STUDIA MATHEMATICA, 2002, 152 (01) :11-31
[3]   CONSEQUENCES OF THE EXISTENCE OF A NON-COMPACT OPERATOR BETWEEN NUCLEAR KOTHE SPACES [J].
NURLU, Z ;
TERZIOGLU, T .
MANUSCRIPTA MATHEMATICA, 1984, 47 (1-3) :1-12
[4]   UNBOUNDED LINEAR-OPERATORS AND NUCLEAR KOTHE QUOTIENTS [J].
ONAL, S ;
TERZIOGLU, T .
ARCHIV DER MATHEMATIK, 1990, 54 (06) :576-581
[5]  
Onal S., 1991, REV MAT COMPLUT, V4, P55
[6]  
Onal S., 1991, TURK J MATH, V15, P42
[7]   Factorization of unbounded operators on Kothe spaces [J].
Terzioglou, T ;
Yurdakul, M ;
Zuhariuta, V .
STUDIA MATHEMATICA, 2004, 161 (01) :61-70
[8]   RESTRICTIONS OF UNBOUNDED CONTINUOUS LINEAR-OPERATORS ON FRECHET SPACES [J].
TERZIOGLU, T ;
YURDAKUL, M .
ARCHIV DER MATHEMATIK, 1986, 46 (06) :547-550
[9]  
Vogt D., 1991, T J MATH, V15, P200
[10]  
Yurdakul M., 1993, ARCH MATH, V61, P385