BCseq: accurate single cell RNA-seq quantification with bias correction

被引:28
作者
Chen, Liang [1 ]
Zheng, Sika [2 ]
机构
[1] Univ Southern Calif, Dept Biol Sci, Mol & Computat Biol, 1050 Childs Way, Los Angeles, CA 90089 USA
[2] Univ Calif Riverside, Sch Med, Div Biomed Sci, 900 Univ Ave, Riverside, CA 92521 USA
基金
美国国家卫生研究院;
关键词
D O I
10.1093/nar/gky308
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
With rapid technical advances, single cell RNA-seq (scRNA-seq) has been used to detect cell subtypes exhibiting distinct gene expression profiles and to trace cell transitions in development and disease. However, the potential of scRNA-seq for new discoveries is constrained by the robustness of subsequent data analysis. Here we propose a robust model, BCseq (bias-corrected sequencing analysis), to accurately quantify gene expression from scRNA-seq. BCseq corrects inherent bias of scRNA-seq in a data adaptive manner and effectively removes technical noise. BCseq rescues dropouts through weighted consideration of similar cells. Cells with higher sequencing depths contribute more to the quantification nonlinearly. Furthermore, BCseq assigns a quality score for the expression of each gene in each cell, providing users an objective measure to select genes for downstream analysis. In comparison to existing scRNA-seq methods, BCseq demonstrates increased robustness in detection of differentially expressed (DE) genes and cell subtype classification.
引用
收藏
页数:9
相关论文
共 27 条
[1]   Differential expression analysis for sequence count data [J].
Anders, Simon ;
Huber, Wolfgang .
GENOME BIOLOGY, 2010, 11 (10)
[2]   Design and computational analysis of single-cell RNA-sequencing experiments [J].
Bacher, Rhonda ;
Kendziorski, Christina .
GENOME BIOLOGY, 2016, 17
[3]   Near-optimal probabilistic RNA-seq quantification (vol 34, pg 525, 2016) [J].
Bray, Nicolas L. ;
Pimentel, Harold ;
Melsted, Pall ;
Pachter, Lior .
NATURE BIOTECHNOLOGY, 2016, 34 (08) :888-888
[4]  
Consul PC., 2006, Lagrangian probability distributions, DOI DOI 10.1007/0-8176-4477-6
[5]   STAR: ultrafast universal RNA-seq aligner [J].
Dobin, Alexander ;
Davis, Carrie A. ;
Schlesinger, Felix ;
Drenkow, Jorg ;
Zaleski, Chris ;
Jha, Sonali ;
Batut, Philippe ;
Chaisson, Mark ;
Gingeras, Thomas R. .
BIOINFORMATICS, 2013, 29 (01) :15-21
[6]   MAST: a flexible statistical framework for assessing transcriptional changes and characterizing heterogeneity in single-cell RNA sequencing data [J].
Finak, Greg ;
McDavid, Andrew ;
Yajima, Masanao ;
Deng, Jingyuan ;
Gersuk, Vivian ;
Shalek, Alex K. ;
Slichter, Chloe K. ;
Miller, Hannah W. ;
McElrath, M. Juliana ;
Prlic, Martin ;
Linsley, Peter S. ;
Gottardo, Raphael .
GENOME BIOLOGY, 2015, 16
[7]   Comparison of methods to detect differentially expressed genes between single-cell populations [J].
Jaakkola, Maria K. ;
Seyednasrollah, Fatemeh ;
Mehmood, Arfa ;
Elo, Laura L. .
BRIEFINGS IN BIOINFORMATICS, 2017, 18 (05) :735-743
[8]  
Karatzoglou A., 2004, J. Stat. Softw., V11, P1, DOI [DOI 10.18637/JSS.V011.I09, 10.18637/jss.v011.i09]
[9]  
Kharchenko PV, 2014, NAT METHODS, V11, P740, DOI [10.1038/nmeth.2967, 10.1038/NMETH.2967]
[10]   Somatosensory neuron types identified by high-coverage single-cell RNA-sequencing and functional heterogeneity [J].
Li, Chang-Lin ;
Li, Kai-Cheng ;
Wu, Dan ;
Chen, Yan ;
Luo, Hao ;
Zhao, Jing-Rong ;
Wang, Sa-Shuang ;
Sun, Ming-Ming ;
Lu, Ying-Jin ;
Zhong, Yan-Qing ;
Hu, Xu-Ye ;
Hou, Rui ;
Zhou, Bei-Bei ;
Bao, Lan ;
Xiao, Hua-Sheng ;
Zhang, Xu .
CELL RESEARCH, 2016, 26 (01) :83-102