Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress

被引:20
|
作者
Wu, Bin [1 ]
Munkhtuya, Yarvaan [1 ]
Li, Jianjiang [2 ]
Hu, Yani [1 ]
Zhang, Qian [1 ]
Zhang, Zongwen [1 ]
机构
[1] Chinese Acad Agr Sci, Inst Crop Sci, 12 Zhongguancun South St, Beijing 100081, Peoples R China
[2] Xinjiang Acad Agr Sci, Inst Grain Crops, 403 Nanchang Rd, Urumqi 830091, Peoples R China
来源
SCIENTIFIC REPORTS | 2018年 / 8卷
基金
中国国家自然科学基金;
关键词
TOLERANCE; ANNOTATION; MECHANISMS; TOOL;
D O I
10.1038/s41598-018-34505-5
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Salinity is one of the major abiotic factors that affect productivity in oat. Here, we report a comparison of the transcriptomes of two hexaploid oat cultivars, 'Hanyou-5' and 'Huazao-2', which differ with respect to salt tolerance, in seedlings exposed to salt stress. Analysis of the assembled unigenes from the osmotically stressed and control libraries of 'Hanyou-5' and 'Huazao-2' showed that the expression of 21.92% (36,462/166,326) of the assembled unigenes was differentially regulated in the two cultivars after different durations of salt stress. Bioinformatics analysis showed that the main functional categories enriched in these DEGs were "metabolic process", "response to stresses", "plant hormone signal transduction", "MAPK signalling", "oxidative phosphorylation", and the plant-pathogen interaction pathway. Some regulatory genes, such as those encoding MYB, WRKY, bHLH, and zinc finger proteins, were also found to be differentially expressed under salt stress. Physiological measurements also detected significant differences in the activities of POD (76.24 +/- 1.07 Vs 81.53 +/- 1.47 U/g FW) in the two genotypes in response to osmotic stress. Furthermore, differential expression of 18 of these genes was successfully validated using RNA-seq and qRT-PCR analyses. A number of stress-responsive genes were identified in both cultivars, and candidate genes with potential roles in the adaptation to salinity were proposed.
引用
收藏
页数:9
相关论文
共 50 条
  • [1] Comparative Transcriptional Profiling and Physiological Responses of Two Contrasting Oat Genotypes under Salt Stress
    Bin Wu
    Yarvaan Munkhtuya
    Jianjiang Li
    Yani Hu
    Qian Zhang
    Zongwen Zhang
    Scientific Reports, 8
  • [2] Comparative phenotypical and transcriptional analysis of two contrasting rice genotypes under salt stress
    Ye, Chan-juan
    Chen, Ke
    Zhou, Xin-qiao
    Shan, Ze-lin
    Chen, Da-gang
    Guo, Jie
    Liu, Juan
    Hu, Hai-Fei
    Chen, Hao
    Chen, You-ding
    Chen, Guo-rong
    Liu, Chuan-guang
    PLANT GROWTH REGULATION, 2024, 104 (03) : 1417 - 1433
  • [3] Comparative Transcriptional Analysis of Two Contrasting Rice Genotypes in Response to Salt Stress
    Ye, Xiaoxue
    Tie, Weiwei
    Xu, Jianlong
    Ding, Zehong
    Hu, Wei
    AGRONOMY-BASEL, 2022, 12 (05):
  • [4] Comparative proteomic and physiological characterisation of two closely related rice genotypes with contrasting responses to salt stress
    Hosseini, Seyed Abdollah
    Gharechahi, Javad
    Heidari, Manzar
    Koobaz, Parisa
    Abdollahi, Shapour
    Mirzaei, Mehdi
    Nakhoda, Babak
    Salekdeh, Ghasem Hosseini
    FUNCTIONAL PLANT BIOLOGY, 2015, 42 (06) : 527 - 542
  • [5] Comparative Transcriptional Profiling of Two Contrasting Barley Genotypes under Salinity Stress during the Seedling Stage
    Gao, Runhong
    Duan, Ke
    Guo, Guimei
    Du, Zhizhao
    Chen, Zhiwei
    Li, Liang
    He, Ting
    Lu, Ruiju
    Huang, Jianhua
    INTERNATIONAL JOURNAL OF GENOMICS, 2013, 2013
  • [6] Comparative study of transcriptional and physiological responses to salinity stress in two contrasting Populus alba L. genotypes
    Beritognolo, Isacco
    Harfouche, Antoine
    Brilli, Federico
    Prosperini, Gianluca
    Gaudet, Muriel
    Brosche, Mikael
    Salani, Francesco
    Kuzminsky, Elena
    Auvinen, Petri
    Paulin, Lars
    Kangasjarvi, Jaakko
    Loreto, Francesco
    Valentini, Riccardo
    Mugnozza, Giuseppe Scarascia
    Sabatti, Maurizio
    TREE PHYSIOLOGY, 2011, 31 (12) : 1335 - 1355
  • [7] Comparative transcriptional profiling of two contrasting rice genotypes under salinity stress during the vegetative growth stage
    Walia, H
    Wilson, C
    Condamine, P
    Liu, X
    Ismail, AM
    Zeng, LH
    Wanamaker, SI
    Mandal, J
    Xu, J
    Cui, XP
    Close, TJ
    PLANT PHYSIOLOGY, 2005, 139 (02) : 822 - 835
  • [8] Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage
    Maria Elisa B.GERONA
    Marjorie P.DEOCAMPO
    James A.EGDANE
    Abdelbagi M.ISMAIL
    Maribel L.DIONISIO-SESE
    Rice Science, 2019, 26 (04) : 207 - 219
  • [9] Physiological Responses of Contrasting Rice Genotypes to Salt Stress at Reproductive Stage
    Gerona, Maria Elisa B.
    Deocampo, Marjorie P.
    Egdane, James A.
    Ismail, Abdelbagi M.
    Dionisio-Sese, Maribel L.
    RICE SCIENCE, 2019, 26 (04) : 207 - 219
  • [10] Comparative Metabolite Profiling of Two Rice Genotypes with Contrasting Salt Stress Tolerance at the Seedling Stage
    Zhao, Xiuqin
    Wang, Wensheng
    Zhang, Fan
    Deng, Jianli
    Li, Zhikang
    Fu, Binying
    PLOS ONE, 2014, 9 (09):