NEW PARITY RESULTS OF SUMS OF PARTITIONS AND SQUARES IN ARITHMETIC PROGRESSIONS

被引:0
作者
Hu, Weiding [1 ]
Yao, Olivia X. M. [1 ]
Zhao, Taoyan [1 ]
机构
[1] Jiangsu Univ, Dept Math, Zhenjiang 212013, Jiangsu, Peoples R China
基金
美国国家科学基金会;
关键词
partitions; parity; arithmetic progressions;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Recently, Ballantine and Merca proved that if (a, b) is an element of {(6, 8), (8,12), (12,24), (15,40), (16,48), (20,120), (21,168)}, then Sigma(ak+1 square) p(n - k) 1 (mod 2) if and only if bn + 1 is a square. In this paper, we investigate septuple (a(1), a(2), a(3), a(4), a(5), a(6), a(7)) is an element of N-5 x Q(2) for which Sigma(a1k+a2 square) P(a(3)a(4)(alpha)n + a(6)a(4)(alpha) + a(7) - k) 1 (mod 2) if and only if a(5)n + 1 is a square. We prove some new parity results of sums of partitions and squares in arithmetic progressions which are analogous to the results due to Ballantine and Merca.
引用
收藏
页码:117 / 129
页数:13
相关论文
共 17 条
[1]  
Ahmed Z, 2016, RAMANUJAN J, V40, P649, DOI 10.1007/s11139-015-9752-2
[2]   Parity of sums of partition numbers and squares in arithmetic progressions [J].
Ballantine, Cristina ;
Merca, Mircea .
RAMANUJAN JOURNAL, 2017, 44 (03) :617-630
[3]  
Berndt B., 1985, Ramanujans Notebooks, Part V
[4]  
Calkin N., 2008, Integers, V8, pA60
[5]   ON THE PARITY OF P(N) .2. [J].
HIRSCHHORN, MD .
JOURNAL OF COMBINATORIAL THEORY SERIES A, 1993, 62 (01) :128-138
[6]  
HIRSCHHORN MD, 1980, ACTA ARITH, V38, P105
[7]   ELEMENTARY PROOFS OF PARITY RESULTS FOR 5-REGULAR PARTITIONS [J].
Hirschhorn, Michael D. ;
Sellers, James A. .
BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2010, 81 (01) :58-63
[8]  
Kolberg O., 1959, MATH SCAND, V7, P377
[9]  
Newman M., 1960, Trans. Amer. Math. Soc., V97, P225
[10]   On the parity of additive representation functions [J].
Nicolas, JL ;
Ruzsa, IZ ;
Sarkozy, A .
JOURNAL OF NUMBER THEORY, 1998, 73 (02) :292-317